MUTI-METRIC ADAPTIVE ROUTING ALGORITHM
FOR UNDERWATER WIRELESS SENSOR NETWORKS

A Thesis
by
BHANU KISHORE KAMAPANTULA

Submitted in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

Texas A&M University - Corpus Christi
Corpus Christi, Texas

August 2011

Major Subject: Computer Science
ABSTRACT

Research in Underwater Wireless Sensor Networks (UWSNs) has flourished in recent past. Routing in underwater wireless sensor networks differs from routing in terrestrial wireless sensor networks. This is due to issues such as limited bandwidth in water, node mobility due to water currents, and potential delay in data packet transmission. A novel Multi-Metric Adaptive Routing (MMAR) algorithm for UWSNs is proposed and implemented. MMAR algorithm considers depth at which nodes are deployed, packet age, energy level at each node, average energy level of the network at a given instance, and hop count from a particular participating node to the base node. The metrics level at every node is estimated using a vector representation. A routing technique is chosen depending on the value of calculated metrics. The three possibilities of routing techniques that can be adapted are Almost-Ring approach, Distributed approach, or Centralized approach. Base node floats on water surface and participating nodes are deployed underwater. MMAR routing implements acoustic and radio energy models for communication underwater and over the air, respectively. The routing algorithm is simulated in C language and Message Passing Interface (MPI). A case study on forecasting red tides using wireless sensor networks is presented to establish the centralized routing approach. The performance of different routing strategies is noted apart from determining the energy required by a node to transmit and receive data from other nodes. The performance of MMAR is compared with Vector-Based Forwarding and Depth-Based Routing techniques. The overall performance of the Multi-Metric Adaptive Routing algorithm is average considering that node mobility is not addressed.
DEDICATION

I would like to dedicate this research work to my parents, Satyanarayana Murthy and Krishna Kumari, and my grandmother Bala Tripura Sundari. My ability to question whatever I come across is only because of the freedom my parents gave me since my childhood. I owe my disciplined life to my grandmother who took great pains to nurture me.
ACKNOWLEDGEMENTS

It is a great pleasure for me to acknowledge all without whom, this thesis would not have seen the daylight. I would like to acknowledge my advisor Dr. Ahmed Mahdy who has been a guiding force in my research. He has been very enthusiastic about my progress academically and has taken keen interest in nurturing my research interests. For two years, my interactions with him have been rewarding and enriching. Without a doubt, he is the best mentor for Master's degree one can come across.

I would like to thank Dr. Dulal Kar, Dr. Longzhuang Li and Dr. Mufid Abudiab for serving on my Thesis committee. I worked with Dr. Kar and Dr. Li in Summer 2010, 2011 for the summer REU program where I had an unique opportunity to interact and work with undergraduate students. I am extremely thankful for their support at TAMUCC.

I would like to thank Dr. King for his valuable advice and for the wonderful discussions we had. His teachings offered me a new perspective to address Computer Science problems.

I would like to acknowledge the support of my friends Santosh, LKC, Shravan, Ashu, Sanketh, Karteek, Bharath, Pavan, Doctor Bharath, Vishnu, Sireesha who always believed in me. I am grateful for the time spent with Sowmya, Sandeep, Raj, Rakesh, Vinay, Sushil bhai, Geetha and Sharath at Corpus Christi. I would like to acknowledge the support of Ramakrishna Podila for his invaluable suggestions on research. I am grateful to Rakesh Tatiparthy and Sai Krishna Majeti for the support they offered me when I needed it the most.

I am extremely thankful for the support of my brother, Sunder Nagesh, who has been an instrumental, invisible and inspirational force behind my success.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Challenges in Underwater Wireless Sensor Networks</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Contribution</td>
<td>7</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>10</td>
</tr>
<tr>
<td>2.1 RF Electromagnetic Communication in UWSNs</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Delay/Disruption Tolerant Networks</td>
<td>11</td>
</tr>
<tr>
<td>2.3 GPS-free Routing Protocol</td>
<td>11</td>
</tr>
<tr>
<td>2.4 E-PULRP</td>
<td>12</td>
</tr>
<tr>
<td>2.5 MAC Protocol for Data Collection</td>
<td>13</td>
</tr>
<tr>
<td>2.6 Energy-Aware Routing Protocol</td>
<td>13</td>
</tr>
<tr>
<td>2.7 Vector-Based Forwarding Protocol</td>
<td>14</td>
</tr>
<tr>
<td>2.8 Hop-by-Hop Vector-Based Forwarding</td>
<td>15</td>
</tr>
<tr>
<td>3 MULTI-METRIC ADAPTIVE ROUTING ALGORITHM</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Network Topology</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Attributes Used</td>
<td>18</td>
</tr>
<tr>
<td>3.3 Routing Approaches</td>
<td>19</td>
</tr>
<tr>
<td>3.4 Multi-Metric Adaptive Routing Algorithm</td>
<td>20</td>
</tr>
<tr>
<td>3.5 Energy Model</td>
<td>25</td>
</tr>
<tr>
<td>3.6 Event Synchronization</td>
<td>26</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.7 Multi-Metric Adaptive Routing Algorithm Complexity</td>
<td>27</td>
</tr>
<tr>
<td>3.7.1 Complexity of Centralized Routing Approach</td>
<td>27</td>
</tr>
<tr>
<td>3.7.2 Complexity of Almost-ring Routing Approach</td>
<td>28</td>
</tr>
<tr>
<td>3.7.3 Complexity of Distributed Routing Approach</td>
<td>28</td>
</tr>
<tr>
<td>3.7.4 Complexity of Multi-Metric Adaptive Routing Algorithm</td>
<td>28</td>
</tr>
<tr>
<td>3.7.5 Communication Overhead</td>
<td>29</td>
</tr>
<tr>
<td>3.7.5.1 Number of Messages</td>
<td>29</td>
</tr>
<tr>
<td>3.7.5.2 Best and Worst-Case Scenarios</td>
<td>30</td>
</tr>
<tr>
<td>3.7.6 Best-Case Scenario</td>
<td>31</td>
</tr>
<tr>
<td>3.7.6.1 Energy Constraints</td>
<td>31</td>
</tr>
<tr>
<td>3.7.6.2 Time Complexity</td>
<td>31</td>
</tr>
<tr>
<td>3.7.7 Worst-Case Scenario</td>
<td>32</td>
</tr>
<tr>
<td>3.8 Overall Characteristics of Multi-Metric Adaptive Routing Algorithm</td>
<td>32</td>
</tr>
<tr>
<td>4 CASE STUDY - FORECASTING RED TIDES USING UNDERWATER WIRELESS SENSOR NETWORKS</td>
<td>34</td>
</tr>
<tr>
<td>4.1 Current Approaches to Monitor Red Tides</td>
<td>34</td>
</tr>
<tr>
<td>4.2 Contributing Factors</td>
<td>36</td>
</tr>
<tr>
<td>4.3 Forecasting Red Tides Using Underwater Wireless Sensor Networks</td>
<td>39</td>
</tr>
<tr>
<td>4.3.1 Simulating Red Tide Environment - Using TinyDB, TOSSIM</td>
<td>39</td>
</tr>
<tr>
<td>4.3.1.1 Limitations of Forecasting Red Tides Using TinyDB and TOSSIM</td>
<td>40</td>
</tr>
<tr>
<td>4.3.2 Simulating Red Tide Environment - Using C language, Message Passing Interface</td>
<td>42</td>
</tr>
<tr>
<td>5 PERFORMANCE EVALUATION</td>
<td>44</td>
</tr>
<tr>
<td>5.1 Implementation</td>
<td>44</td>
</tr>
<tr>
<td>5.1.1 Centralized Algorithm Implementation</td>
<td>44</td>
</tr>
<tr>
<td>5.1.2 Almost-Ring Algorithm Implementation</td>
<td>45</td>
</tr>
<tr>
<td>5.1.3 Distributed Algorithm Implementation</td>
<td>45</td>
</tr>
<tr>
<td>5.2 Simulation Results</td>
<td>48</td>
</tr>
<tr>
<td>5.2.1 Time Taken by Participating Nodes to Send Information to the Base Node</td>
<td>48</td>
</tr>
</tbody>
</table>
CHAPTER 5.2.1.1 Time Calculation - Three Node Network Simulation

50

CHAPTER 5.2.1.2 Time Calculation - Five Node Network Simulation

50

CHAPTER 5.2.1.3 Time Calculation - Fifteen Node Network Simulation

51

CHAPTER 5.2.1.4 Time Calculation - Fifty Node Network Simulation

52

CHAPTER 5.3 Energy Analysis

53

5.3.1 Factors to Consider for Energy Analysis

56

5.3.2 Energy Analysis of Centralized Routing Approach

56

5.3.3 Energy Analysis of Almost-Ring and Distributed Routing Approach

57

CHAPTER 5.4 Comparison to Other UWSN Routing Algorithms

58

5.4.1 MMAR Performance Comparison with DBR and VBF Protocols

61

CHAPTER 6 FUTURE RESEARCH DIRECTIONS

64

CHAPTER 7 CONCLUSION

68

REFERENCES

70

APPENDIX A

76

APPENDIX B

78

7.1 Distributed Routing Approach

79

7.2 Almost-Ring Routing Approach

80

7.3 Energy and Metrics Calculations

80
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Speeds of Different Waves</td>
<td>4</td>
</tr>
<tr>
<td>II Different Scenarios for Algorithmic Complexities</td>
<td>29</td>
</tr>
<tr>
<td>III Number of Messages Involved in Different Routing Strategies</td>
<td>30</td>
</tr>
<tr>
<td>IV Categorized Group Values of Contributing Factors</td>
<td>40</td>
</tr>
<tr>
<td>V Contributing Factors and Corresponding Threshold Range</td>
<td>43</td>
</tr>
<tr>
<td>VI Number of Nodes Per Level - Four Levels Description</td>
<td>46</td>
</tr>
<tr>
<td>VII Node Number and Corresponding Constant Values</td>
<td>48</td>
</tr>
<tr>
<td>VIII Variables Implemented and Corresponding Description</td>
<td>49</td>
</tr>
<tr>
<td>IX Node Number, Time Taken to Transmit Packet to Base Node - 3 Nodes</td>
<td>50</td>
</tr>
<tr>
<td>X Node Number, Time Taken to Transmit Packet to Base Node - 5 Nodes</td>
<td>50</td>
</tr>
<tr>
<td>XI Node Number, Time Taken to Transmit Packet to Base Node - 15 Nodes</td>
<td>51</td>
</tr>
<tr>
<td>XII Node Number, Time Taken to Transmit Packet to Base Node - 50 Nodes</td>
<td>52</td>
</tr>
<tr>
<td>XIII Different Variables Attributed to a Participating Node, Assigned Values</td>
<td>57</td>
</tr>
<tr>
<td>XIV Comparison of Different UWSN Routing Algorithms</td>
<td>59</td>
</tr>
<tr>
<td>XV Percentage of Energy Consumed by Nodes in Centralized Routing Approach</td>
<td>59</td>
</tr>
<tr>
<td>XVI Percentage of Energy Consumed by Nodes - Almost-Ring Routing Approach</td>
<td>59</td>
</tr>
<tr>
<td>XVII Dependence of Performance of Routing Approaches on Factors Involved</td>
<td>60</td>
</tr>
<tr>
<td>XVIII Comparing DBR, MMAR and VBF</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

FIGURE Page
1 Centralized Routing Approach 20
2 Distributed Routing Approach 21
3 Almost-Ring Routing Approach 21
4 Multi-metric Adaptive Routing Algorithm 23
5 Red Tides 35
6 Simulation of Estimation Oxygen - Forecasting Red Tides Using TinyDB, TOSSIM 41
7 Communication in Distributed Routing Approach 47
8 Time Observations (Seconds) for Centralized Routing Approach 53
9 Time Observations (Seconds) for Centralized and Almost-Ring Routing Approaches 54
10 Time Observations (Seconds) for Centralized and Distributed Routing Approaches 55
11 Relation of Packet Age to Energy Required Per Packet 58
12 Increase in Energy Consumption with Packet Age 60
13 Number of Messages to Initialize Protocol - 5 nodes 63
CHAPTER 1

INTRODUCTION

1.1 Background

The field of Wireless Sensor Networks (WSNs) has captured the imagination of the world with their potential to enhance human lives. WSNs have promised so much that extensive research now is underway leading to wide applications of WSNs in fields like agriculture monitoring, industrial monitoring, smart housing, automobile industry and in civilian and military applications. A wireless sensor node is capable of sensing information, processing, and transmitting information to other nodes via proper communication. While sensor nodes have been developed for deployment on land, native nodes for underwater environment have not been developed yet. Terrestrial nodes enclosed in specially designed cases have been deployed the nodes in water but they do not exploit underwater conditions. These waterproof nodes are vulnerable to issues such as localization, communication overhead (i.e. electromagnetic waves are susceptible over long distances in underwater environment), bandwidth, dynamic topology, and node mobility. Hence, using nodes enclosed in cases is not an ideal solution to monitor the underwater environment and is not suggested for deployment in underwater environments. The field of Underwater Wireless Sensor Networks (UWSNs) is established fairly recent with increased focus on underwater surveillance and other military purposes. UWSNs potentially have wide range of applications in military, ocean environment conservation, and target tracking. UWSNs are also useful in disaster management and monitoring earthquakes in underwater environments. Significant research has been invested currently in UWSNs considering
the potential of underwater applications [1, 2, 3].

Research prototypes of WSNs have been developed in academic institutions in collaboration with industry. Some notable platforms of WSNs are MICAZ, MICA2, TelOsrb and IRIS. These nodes require sensor boards such as MTS300 and MTS300 for capturing temperature, acceleration among other measurement. MTS300 sensor board is capable of measuring temperature, light and sound readings. MTS310 board, in addition to MTS300 abilities, is capable of observing accelerometer and magnetometer readings.

Recent reports reveal researchers' interest to explore dynamically reconfigurable Marine Wireless Sensor Networks (MWSNs) [4]. This research aims to focus on sensor mobility and dynamically changing network topology. The researchers also aim to open new research directions which often lead to more exciting applications in UWSNs. Project NEPTUNE aims to build an underwater ocean observatory network that connects to the Internet from underwater environment [5]. This research evidently opens an unknown underwater world. Interdisciplinary research has great scope with possible collaborations among geological, computational and biological sciences. Monitoring earthquakes and Tsunamis will be possible with assistance from NEPTUNE. Ocean surveillance and monitoring marine species will be feasible with NEPTUNE.

Building a robust UWSN requires the network to be secure, reliable and well connected. An UWSN must be made safe and secure by lightweight (in terms of energy) security protocols due to energy constraints in maintaining a power-inefficient security protocols. The network must be intact even in cases of node deaths (total battery usage), interruptions (change in network topology), or attacks (network/nodes can be attacked to destroy or manipulate information at the nodes). Routing strategies must be developed to hold the network together. Routing heavily depends on energy
levels available at the nodes. Routing in UWSNs is a challenge due to several reasons [6]. Routing algorithms available for terrestrial WSNs are not suitable for UWSNs due to critical differences in communication, localization, time synchronization, node mobility, and power consumption.

1.2 Challenges in Underwater Wireless Sensor Networks

Underwater Wireless Sensor Networks are not void of problems and challenges. Significant issues in UWSNs include communication, security, localization, energy, node mobility, dynamic network topology, and routing.

UWSNs are extremely useful in military and enemy surveillance applications. Securing information is critical in such applications. However, given the scarce power resources available to the nodes deployed underwater, the entire process of encryption and decryption (several rounds of mathematical operations) is power intense and leaves node power-drained.

1. Communication

Terrestrial WSNs use radio energy model to communicate among nodes. Electromagnetic waves cannot travel over a long distance in underwater environments due to signal dampening. Alternative communication techniques to RF (Radio Frequency) include acoustic communications and optical communications. A signal dampens (reduces) over time during signal propagation. Acoustic communication is widely used for underwater communication due to low signal dampening in water. This approach works well especially in deep ocean water. In shallow water, however, this mode of communication is disturbed by temperature gradients, surface noise and multipath propagation due to reflection and refraction [7]. Lower propagating speed of acoustic waves also hinders communication in underwater environments. Electromagnetic waves are usually
Table I. Speeds of Different Waves

<table>
<thead>
<tr>
<th>Factor</th>
<th>Acoustic</th>
<th>Electromagnetic</th>
<th>Optical Waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed (m/s)</td>
<td>1500</td>
<td>33,333,333</td>
<td>33,333,333</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1 KHz</td>
<td>1 MHz</td>
<td>10-150 MHz</td>
</tr>
<tr>
<td>Range</td>
<td>1 km</td>
<td>10 m</td>
<td>10-100 m</td>
</tr>
<tr>
<td>Power Loss</td>
<td>>0.1 dB/m/Hz</td>
<td>28 dB/1km/100MHz</td>
<td>depends on turbidity</td>
</tr>
</tbody>
</table>

not preferred for underwater communication due to the conductive nature of the medium (water). However, this mode is suitable for short-range underwater communication due to its better speed advantage over acoustic waves. However, due to signal dampening, this communication mode is not preferred for long-range communication. Free-Space Optical (FSO) waves are another alternative option to acoustic communication useful for short-range communication. According to [7], water absorption at optical frequency band affects long distance communication. FSO waves are preferred for applications such as oil-rig maintenance and seaport monitoring.

Significant latency delays information to be transmitted at expected time and low-bandwidth channels does not help quick transmission either. Evidently, network congestion is a potential problem in cases where network latency is high. Table I lists the differences between acoustic, electromagnetic and optical waves [7].

2. Battery Consumption

Battery life in shallow water UWSNs and its optimization techniques are estimated in [8]. Battery life of the node and hence, the network depends on the network topology, shallow water environment and the limited bandwidth availability. The performance of PCTR (Power Consumption to Throughput
Ratio) is observed to study the variation in battery life. One possible solution to enhance battery life is to ensure fewer data updates, lower spatial density and shorter range [9].

3. Other Power Resources

Nodes in terrestrial WSNs have the ability to be powered by solar energy in the wake of low power availability. Nodes deployed in underwater environment cannot afford to be energized by solar energy due unavailability of sunlight in deep water.

Battery technology for Underwater Wireless Sensor nodes is reviewed in [10] and it is suggested that Li-ion (Lithium) systems have the potential to power UWSN nodes because of the availability of higher levels of energy and power densities compared to Nickel Cadmium and Nickel Metal Hydride systems. Other features of Li-ion battery system according to [11] include

(a) Cost-efficient life cycle, little maintenance, and reduced memory effect;
(b) Low discretion rate with no thermal or magnetic signature. Hence, increases the system’s survivability;
(c) Flexible design - independent, secure, communicant battery technology; and
(d) Readable battery status.

4. Network Topology

Node mobility is a critical issue in UWSNs compared to terrestrial WSNs. Usually, nodes are static in their position but not behavior in terrestrial WSNs. Nodes deployed in an UWSN are more susceptible to position change because of wave activity in water. While it may not be a significant issue in deep waters,
node mobility is a major issue in shallow waters considering floating nodes (on water surface) and nodes deployed near to water surface. According to [12], underwater objects might drift at the speed of 2-3 knots (3-6 Km/hr) in a conventional underwater environment. While, research has been encouraging in UWSNs overall, node mobility has not been addressed completely yet.

Given the node mobility, a UWSN must adapt dynamically to the changes in the nodes and network topology. Network must be self-learning in order to adjust to the new topology. Designing efficient network topologies in terrestrial WSNs has been researched previously in [13, 14, 15]. Topology control in UWSNs has been addressed in [16, 17]. Efficient topology control helps address continuous network connectivity, reduced energy consumption, increased network lifetime, efficient usage of bandwidth and in ensuring optimal results. Network topology also contributes to efficient channel distribution.

5. **Security**

While security in terrestrial WSNs has been progressive [18], research in UWSN security is still in nascent stages [19]. The limited energy resources significantly impact the availability of a robust security technique considering node’s power-draining vulnerability. Research in security will be key to develop underwater applications using sensor networks. Power required to process cryptic messages (encryption and decryption) must be studied extensively before implementing a suitable security technique.

Many challenges to be addressed in securing UWSNs include data confidentiality, data integrity, synchronization of encrypted messages, secure localization and authentication of nodes for secure message transmission.

Data Confidentiality and Data Integrity
Data transmitted between interacting (sending and receiving) nodes must not be shared with any other node in some UWSN applications such as military. Information transmitted to one node from another should be intact and must not be modified. Ensuring data integrity is critical in many applications like disaster management, earthquake warning system and target tracking.

Authentication

Man-in-the-middle attacks can arise if no secure channel between two interacting (sending and receiving) nodes is established. An out-of-the-network node (attacker) can disguise as interacting node and modify the information. A power-aware authentication technique must be developed to suit underwater environment requirements.

Secure Localization

Localization is a major issue, in first place, in UWSNs. Nodes are deployed randomly in underwater environment which makes determining the position of the deployed nodes extremely challenging. GPS (Global Positioning System) is one of the many solutions [20]. However, GPS is power-intensive and is not recommended by researchers [21]. Attacker node (manipulated by intruder) can modify its signal strength and other properties such as energy level and its location to participate in the network. A power-aware approach to achieve secure localization must be developed for communication in underwater environments.

1.3 Contribution

Existing routing algorithms for UWSNs consider localized information or single metric information such as node depth of a deployed node to find a route for transmitting information to different routes. Energy-efficient routing techniques have been implemented for UWSNs in [21], [22], [23] and [24]. Vector-based data forward-
ing techniques for underwater environment have been detailed in [25, 8]. A vector from the source to destination is defined and the nodes close to this vector can forward their information using the vector.

While these routing algorithms focused on localized information and single metrics such as depth information, no algorithm considered multiple metrics for developing a routing strategy. Adaptive routing has been studied by learning about the network but a hybrid routing algorithm that functions according to energy needs is desired. A single routing approach might potentially exhaust the energy resources of the node.

In the proposed and developed Multi-Metric Adaptive Routing (MMAR) algorithm, multiple metrics such as depth information of the node deployed, average energy level of the network, energy level of the node, hop count from the node to the base node and packet age (duration of the packet in the network before delivery) are considered. Depth information of the node adds context to the routing strategy developed for underwater environment. Energy is a vital component that is necessary for processing, sending and receiving of information. WSNs can operate at low energy levels. Nodes are susceptible to mobility in the underwater environment due to water currents. However, node mobility may not be as a major factor in deep waters as much as in shallow waters where the water current can frequently change the node position. Further, operational modes such as reliability mode and greedy mode are presented. In reliability mode, effort is made to ensure that energy is efficiently used. Based on the average energy level in the network, either Distributed, Centralized, or Almost-Ring routing algorithm is chosen.

Extensive performance evaluation of the MMAR algorithm is presented. Algorithmic complexities of the routing algorithm are estimated which include overall complexity of the algorithm, complexity of individual algorithm(s) and complexity of
algorithms when implemented in combination (i.e. Almost-ring and Centralized routing strategies for example). Communication overhead of the proposed algorithm and its individual components (different routing strategies) are calculated where number of messages taken to perform transmission is estimated. Best-case and worst-case scenarios in terms of communication overhead are presented in detail. Further, a case study on forecasting red tides using WSNs has been performed to establish the Centralized routing technique.

The remainder of the thesis is as follows. Chapter 2 presents the literature review of the work done previously on routing strategies for underwater wireless sensor networks. Chapter 3 discusses the proposed Multi-Metric Adaptive Routing algorithm including energy models implemented, algorithmic complexities, and communication overhead. Number of messages taken in each routing approach is estimated. Chapter 3 details the overall features of proposed routing algorithm and time synchronization mechanism to synchronize events (messages transmission). A case study based on the two approaches to forecast red tides using underwater wireless sensor networks is presented in Chapter 4. Chapter 5 evaluates the performance of the proposed algorithm by discussing the implementation of the algorithm. Time and energy analysis of the algorithm is also presented in Chapter 5. Chapter 6 presents future research directions in great detail and Chapter 7 concludes the thesis.
UWSNs vary from terrestrial WSNs significantly. There are observable differences in node mobility, communication mode, energy efficiency, time synchronization and localization. Research work detailing different routing techniques for UWSNs is presented in the following.

2.1 RF Electromagnetic Communication in UWSNs

RF Electromagnetic Communication for UWSNs has been proposed by [26]. This research takes advantage of AODV (Ad-hoc On-demand Distance Vector routing) protocol which is a reactive protocol which implies that a connection is not established until there is a demand for the connection. On the other hand, a proactive protocol is where paths are established irrespective of their usage. While this procedure saves some energy (unused nodes do not participate as there are no incoming or outgoing routes to those nodes), its dynamic behavior is challenging to be addressed. It is important to note that AODV is designed for Mobile Ad-hoc Networks (MANETs) and it comes with its native limitations. It should also be observed that underwater RF electromagnetic communication does not work too well for long-range communications and is effective only for short-range communications.

The research in [26] claims that AODV protocol does not create any additional traffic on already active links and accordingly does not require huge memory for data manipulations.
2.2 Delay/Disruption Tolerant Networks

The Q-learning-based delay/disruption tolerant network routing protocol has been addressed in [23]. The Q-learning-based protocol does not assume node mobility patterns but builds it using mobility history of neighboring nodes. A centralized control system for routing can be avoided according to the researchers as the mobility history of the nodes is disseminated across the nodes. Further, there is a provision for packet priority in case of urgent packet transmission. When a packet nears its expiration time, more duplicates of the packet are sent to ensure packet delivery (for packets with priority). This protocol also uses the depth information of the deployed nodes as the position of the node in underwater environment cannot be estimated accurately due to localization issues.

2.3 GPS-free Routing Protocol

It is very challenging to find the exact location of the sensor nodes deployed in the underwater environment. A Global Positioning System (GPS) can be used to find the location of the node. GPS works well when nodes are in line of sight. When nodes operate out of line of sight, GPS is not convincing in determining the position of the nodes. For a node exhausted with energy requirements for routing and data aggregation, GPS can be an uninviting overhead. Hence, a GPS-free routing protocol has been developed in [21]. A Distributed Underwater Clustering Scheme (DUCS) is used in this GPS-free routing protocol. Non-cluster-head nodes send their information to their cluster-head which performs data aggregation such as average of the values received and sends the information to the sink (node). The data aggregation at the cluster-head ensures efficient use of energy levels in the cluster. A node is burdened and battery-drained by data aggregation and routing responsibilities of being a
cluster-head. Hence, by a random procedure, cluster-head position is rotated among nodes. Clusters are created initially, followed by data transmission during network operation. The cluster-head is selected during the process of clusters creation.

2.4 E-PULRP

An Energy optimized Path Unaware Layered Routing Protocol (E-PULRP) for UWSNs has been detailed in [22]. Nodes are layered out around the sink node in the layered phase. The probability of successful packet transmission is considered to decide the layer widths and transmission energy of nodes. Nodes can be located in one layer and will be at same distance (based on hop count) from the sink node. Not all nodes in the network can communicate. Nodes communicate with nodes in another layer (situated lower than current layer) towards the direction of sink node (inwards). In the communication phase, relay node is singled out in every layer in a manner where the distance between the consecutive relay nodes is maximum and the leftover energy of the chosen relay node is maximum [22]. Node(s) send their information to the nodes singled out as relay node(s) which then send the information to the sink node. The main features of this protocol are

1. Node communication is performed by identified relay nodes in different layers. Multiple relay nodes per one layer ensures higher throughput but a better structure for the network must be worked up on. Contention must also be addressed in the case of multiple relay nodes per one layer.

2. Absence of routing tables, synchronization schemes and localization techniques in E-PULRP offers a new perspective to routing in UWSNs.
2.5 MAC Protocol for Data Collection

An efficient MAC protocol for data collection in UWSNs is proposed in [27]. This protocol guarantees no collision at sink node for receiving packets sequentially despite of no handshaking procedure or reservation allocation for scheduled transmission. Nodes are active only when they communicate with the sink node and they are inactive otherwise. If the data queue is not empty at the inactive nodes, these nodes send a RTS (Request To Send) to the sink node for packet transmission approval in the following time period. A RTS signal is not sent if the queue is empty at the inactive nodes. If the active node’s queue is empty for the next time period, activity scheduled for next period is executed in the current time period and the node goes quiet for the next time period. A control signal which includes transmission schedule and time synchronization schedule is then broadcasted by the sink node. Inactive nodes do not act upon receiving the control signal from the sink node. Active nodes then send their information that constitutes identification number of node and time stamp.

2.6 Energy-Aware Routing Protocol

An energy-aware delay reducing routing protocol is introduced to overcome limitations such as high power consumption and long propagation times in [24]. An energy-efficient data aggregation that is performed by dynamic pruning and grating method is implemented in this protocol. The protocol assumes that every node has an identification number, is informed about its parent and child nodes, and that all nodes are capable of performing data aggregation methods. The Energy-Aware Data Aggregation via Reconfiguration of Aggregation Tree (EADA-RAT) protocol involves the following steps:
1. A node expresses its interest to be a decision node to the sink node.

2. The decision node is then selected. For every node that is not a source node, it performs data aggregation function and selection of decision node after updating the residual energy. Aggregation count is updated at each node which is used to find the sub-tree.

3. Aggregation tree is then reconfigured as described before data transmission is performed. A candidate node which is not parsed before is assigned as a decision node before performing sub-tree selection function and dynamic pruning grafting function. A node selected as decision node compares its CPS (Criterion of Path Selection) value with its right and left child nodes and selects a sub-tree of high CPS value. The CPS value depends directly on Aggregation Count, Minimum Residual Energy and the tunable value.

The convergence and truncation techniques in RAT (Reconfiguration via Aggregation Tree) are explained in detail in [24].

2.7 Vector-Based Forwarding Protocol

VBF (Vector-Based Forwarding Protocol) for UWSNs is proposed in [8]. This protocol aims to handle node mobility in a scalable and energy-efficient manner. Every packet holds information source, target and the forwarder positions. The relative position is estimated by all the nodes that receive the packet. This research assumes a feature that measures the distance to the forwarder and hence the angle of arrival. A packet is discarded by the receiving node if it is farther than a threshold distance defined from the routing vector. A virtual path is established from the source to the destination. VBF operates in two modes:
1. **Source-Initiated Query**

 Whenever the source is ready with information after setting its location, it broadcasts all the nodes with the DATA_READY packet. The receiving nodes then estimate their location relative to the source node with respect to source coordinate system.

2. **Sink-Initiated Query**

 The sink releases an INTEREST packet that contains sink location and target location in sink coordination system. Intermediate nodes then send the information to determined node with location as TP (Target Position). In a location-independent query, TP is left empty and is sent to the potential target nodes.

 A desirable factor is introduced to identify the competence of a node to forward the packets [8]. The position of the node is determined when the node receives the packet. If the receiving node is in the virtual path (vector area), it is given a holding time interval of $T_{adaptation}$. Within this time interval, if the node receives packets from another source the desirable factor is estimated again to find which packets to be forwarded.

2.8 **Hop-by-Hop Vector-Based Forwarding**

 Building on VBF routing protocol, researchers have developed another vector-based forwarding protocol emphasizing hop-by-hop routing in [25]. Instead of one single vector from source to sink as in VBF, HH-VBF implements a routing vector for each forwarder in the network. The performance of the VBF routing protocol is influenced and limited severely by the node density in the network. Routing pipe radius influences routing throughput substantially. The advantages of HH-VBF over
VBF are listed below:

1. To increase the routing throughput, the vector pipe radius of each node does not need to be increased as the largest pipe radius is the transmission range.

2. HH-VBF is capable of identifying information delivery route even in networks where nodes are scattered.

 The desirable factor in HH-VBF depends on the distance between the node and forwarder, distance between the node and the vector and the angle formed at the forwarder between vectors from forwarder to sink and the node. Similar to the VBF routing protocol, a packet is held at the node that received the packet for a time of $T_{adaptation}$.
CHAPTER 3

MULTI-METRIC ADAPTIVE ROUTING ALGORITHM

Section 2 addresses routing algorithms in UWSNs. RF Electromagnetic communication cannot be relied on for large-distance communication in underwater environment. GPS-free routing techniques do not even use node depth but constructs clusters to perform routing similar to routing in MANETs. From section 2 we have observed that only few routing algorithms use depth information of the nodes deployed and no routing approach uses multiple metrics to present a comprehensive routing strategy. Routing decision in UWSNs cannot be based on a single metric like depth of the nodes. A comprehensive routing strategy that considers multiple metrics must be developed. Hence, a novel Multi-Metric Adaptive Routing algorithm is proposed and implemented. Multiple metrics such as depth of the node deployed underwater, energy level at the node, hop count from the participating node to the base node, average energy level of the network at a given instant of time and packet age are considered.

3.1 Network Topology

A UWSN can be viewed as a group of base nodes and participating nodes. Base nodes are assumed to be floating on the water surface and the participating nodes assumed to be deployed underwater. Base nodes are assumed to be supplied with continuous power. RF is used for communication among base nodes. Base nodes communicates with participating nodes using acoustic signals. Base nodes communicate with data centers on nearby land using RF.
3.2 Attributes Used

1. Depth of the participating node
 Participating nodes in a UWSN are deployed at different depths from the water surface. Nodes deployed at a greater depth from the water surface potentially are not in a position to route the data packets directly to the base node. If the average energy level of the network is above an upper threshold, all nodes will be required to transmit data packets using a centralized routing approach. Nodes deployed at a greater depth are evidently at loss. Hence, information regarding depth of the participating node must be considered while routing the data.

2. Energy level at the participating node
 Energy to transmit a data packet by the participating node depends on packet age (Equation 3.2) and number of hops taken from the participating node to the base node. The routing decision will be based on the energy level at the participating node. Apart from this, certain energy is required to receive data packets from the sender participating node.

 The energy consumption for a base node is estimated differently as it uses both acoustic and radio energy models.

3. Hop count from the participating node to the base node
 Hop count from the participating node to the base node gives a rough estimation of the time taken for a packet to reach base node.

4. Average energy level of the network
 When the network operates in a reliability mode (i.e. ensuring definite packet transmission), the average energy level of the network helps deciding the routing
strategy. Calculating average energy level of the network gives a rough estimation of how prepared the participating nodes are, to carry out the routing in an UWSN. Depending on the average energy level of the network, a routing approach is implemented.

In a greedy mode, irrespective of the energy available at the participating nodes a Centralized routing approach is followed. Implying that all participating nodes send their data directly to the base node.

5. **Packet age**

Packet duration of a packet is the amount of time packet takes to reach destination node from its source node.

3.3 Routing Approaches

1. **Centralized Routing Approach**

 Participating nodes sense information initially. Then, they send the information directly to the base node. Nodes deployed deep in the ocean waters require huge energy levels to use this routing technique. The packets do not reach the base node if there is insufficient energy at the participating node.

2. **Distributed Routing Approach**

 Participating nodes send information to the base node through other participating nodes spread across in layered architecture. Energy consumed in this approach is lower than what is consumed in centralized technique.

3. **Almost-Ring Routing Approach**

 Participating nodes send information to its nearest node which in turn sends the information to its nearest participating node. The penultimate participating node then sends the information to the base node. This technique involves
efficient energy consumption as participating nodes send information not to the farthest node but to their respective nearest node.

3.4 Multi-Metric Adaptive Routing Algorithm

The different stages of the algorithm are as follows

Stage 1 - Metrics Calculation

The Multi-Metric Adaptive Routing algorithm depends not on a single metric but multiple factors such as depth of the deployed node, packet age, energy level of the node, hop count from the participating node to the base node and the average energy level of the network. The metrics level of the node is estimated according to [28] as follows:

\[
M = \alpha_1 A + \alpha_2 E + \alpha_3 H
\]

(3.1)
Fig. 2. Distributed Routing Approach

Fig. 3. Almost-Ring Routing Approach
where A represents packet age, E represents energy level of the node and H represents the hop count for a packet to reach the base node from current node. The range of metrics, M, is defined to be in the range [1-100] where 1 means lowest metrics level and 100 is highest metrics level possible. M values from 1 to 33 are termed bad measurements, M values from 34 to 65 are termed average measurements and M values over 65 are termed good measurements. $\alpha_1, \alpha_2, \alpha_3$ are constants which will be discussed later (i.e. Table VII).

Stage 2 - Participate Nodes Sense

The participating nodes sense data and are ready to route.

Stage 3 - Routing Decision

The participating node decides which routing approach to use based on metrics calculated earlier and the network state (average energy level).

1. If the measurements are good, Centralized routing approach is used.

2. If the measurements are average, Distributed routing approach is used.

3. If the measurements are bad, Almost-ring routing approach is used.

Stage 4 - Metrics Re-estimation

Metrics are re-estimated at the participating nodes that send/receive the data packets.

Stage 5 - Node Health Check

If a node is compromised, it is discarded, otherwise sensing continues.

Possible Modes
Fig. 4. Multi-metric Adaptive Routing Algorithm
1. **Reliability Mode**

Depth information of individual nodes is estimated in the range of [1-100] where 1 is the nearest to the water surface and 100 is the farthest point from the water surface. The average energy level (variable) is estimated in the range of [0-100] where 0 is the lowest possible energy level and 100 is the highest possible energy level for a node. The routing algorithm in reliability mode operates as described:

Step 1

If \(\text{node_depth} < 34 \)
for any \(\text{average_energy_level} \),

Centralized Routing algorithm

Step 2

If \(\text{node_depth} > 65 \)
for any \(\text{average_energy_level} \),

Almost-ring Routing algorithm

Step 3

If \(34 \leq \text{node_depth} \leq 65 \)

If \(\text{average_energy_level} < 30 \), **Almost-ring Routing** algorithm

If \(\text{average_energy_level} > 65 \), **Centralized Routing** algorithm

If \(30 \leq \text{average_energy_level} \leq 65 \), **Distributed Routing** algorithm

2. **Greedy Mode**

All participating nodes in the network are eager to deliver the information to the base node in this mode of operation. Regardless of the hop count for every
node, Centralized routing approach is followed. However, energy consumption is higher in this mode of operation as participating nodes do not conform to the multi-hop routing approach that saves energy on average.

3.5 Energy Model

Participating nodes are deployed in the water. Base nodes are assumed to be floating on the water surface. Base nodes communicate with each other using electromagnetic waves (radio frequency). Also, base nodes use this type of communication with data centers. Hence, this requires RF. The base node is also equipped with acoustic energy modem apart from RF capabilities. Participating nodes communicate with each other and base nodes using acoustic waves. Evidently, this requires acoustic energy model.

1. **Acoustic Energy Model in Underwater Environment** The energy consumption model implemented here is from [29] where the energy model is stated as

\[
E = N P_0 T_p r^k a^r
\]

where N is the number of nodes in the network except base node, E represents energy required by sender (node), P_0 denotes the energy at the receiver (node) end necessary to decode the received data packet, T_p represents the data packet duration, r is the distance between sender (node) and receiver (node), k is the spreading factor which is 1 for cylindrical spreading, 1.5 for practical spreading and 2 for spherical spreading.

2. **RF in Underwater Environment** The base node also uses RF to communicate with other base nodes and with data center located on nearby land. The
energy model implemented here is from [30] and is stated as

\[E_{Tx} = E_{elec} * l + E_{fs} * l * d^2 \] \hspace{1cm} (3.3)

where \(E_{Tx} \) is the energy consumed by the sender to send the data, \(E_{elec} \) is the energy spent to operate the transceiver circuit, \(E_{fs} \) is the energy consumption of sending one bit of data to obtain an acceptable bit error rate. \(d \) is the distance the message travels. The energy consumption for receiving a 1 bit of data is given as

\[E_{Rx} = E_{elec} * l \] \hspace{1cm} (3.4)

where \(E_{Rx} \) is the energy consumed by the receiver to receive the data.

3.6 Event Synchronization

Event synchronization is essential in exchanging messages, especially in UWSNs. The Multi-Metric Adaptive Routing algorithm uses Lamport’s logical clock [31] to synchronize messages between nodes (processes). Lamport’s logical clock is driven by Lamport’s ”happened before” relation. The ”happened before” (\(\sqsubseteq \)) relation is described as

1. \(A \sqsubseteq B \) if \(A \) and \(B \) are within the same process and \(A \) happens before \(B \)

2. \(A \sqsubseteq B \) if \(A \) is the event of sending a message \(M \) in one process and \(B \) is the event of receiving the same message by a different process than the sender

3. If \(A \sqsubseteq B \) and \(B \sqsubseteq C \) then \(A \sqsubseteq C \)

Lamport’s logical clock is usually implemented in distributed systems. Multi-Metric Adaptive Routing (MMAR) uses it to synchronize events that are executed
by participating nodes. The implementation of logical clocks is out of the need for a global clock that orders the execution of events. Two consecutive events are causally related. That is, event a causally affects event b if $a \rightarrow b$.

3.7 Multi-Metric Adaptive Routing Algorithm Complexity

The efficiency of any algorithm depends on the time taken for execution and space taken for storage. Algorithmic complexity is measured using Big-O theory. Big-O estimates the upper bounds of an algorithm’s complexity. Time complexity is usually measured in terms of number of instructions executed [32]. It is assumed that each statement takes same amount of time. Space complexity is also considered during the process of estimating algorithm complexity. Also, it is assumed that a constant amount of space is required for all the objects involved for storage.

The complexity of the proposed MMAR algorithm is discussed in this section.

3.7.1 Complexity of Centralized Routing Approach

Several statements are executed in the implementation of Centralized routing approach. Energy estimations, absorption coefficient calculations, and string manipulations are all part of these statements. Message Passing Interface communication statements are also involved in these statements. The complexity of the Centralized routing approach implemented is $O(5n + 6(n-1))$. This is because of the execution of five statements inside the for loop in the base node (only one round of execution). The other 6 statements are executed by other n-1 nodes, for a single round of execution. The adjusted complexity of the Centralized routing approach equals $O(11n - 6)$. For large values of n, the complexity is evidently $O(n)$.
3.7.2 Complexity of Almost-ring Routing Approach

The Almost-Ring algorithm involves relatively minimum effort from the base node compared to effort from participating nodes. Four statements are executed by the base node (node 0) and 12 statements are executed by n-1 nodes depending on a condition. This establishes that the complexity of Almost-Ring routing approach is $O(12n - 8)$ which is not too different from the complexity of Centralized routing approach described in Section 3.7.1. For large values of n, the complexity is $O(n)$.

3.7.3 Complexity of Distributed Routing Approach

The Distributed routing approach involves execution of the same energy estimation statements, absorption coefficient calculation statements and string manipulations. Participating nodes are categorized differently in Distributed mode of communication. Node 1 (2^0) operates in level 1, nodes 2 (2^1) and 3 ($2^1 + 1$) function in level 2. Nodes 4 (2^2), 5($2^2 + 1$), 6 ($2^2 + 2$) and 7 ($2^2 + 3$) operate in level 3. It must be observed that nodes are separated in different levels in orders of powers of 2. The complexity of Distributed routing approach is $O(log n)$.

3.7.4 Complexity of Multi-Metric Adaptive Routing Algorithm

It can be derived from the above estimations that the complexity of Multi-Metric Adaptive Routing algorithm to be $O(n + log n)$. The best case complexity scenario is $O(log n)$ when the network uses in Distributed routing approach for transmitting information. The worst case complexity scenario is $O(n)$. Table II lists the complexities of the routing approaches discussed above.
Table II. Different Scenarios for Algorithmic Complexities

<table>
<thead>
<tr>
<th>Routing approach</th>
<th>Complexity</th>
<th>For large (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized</td>
<td>(O(11n - 6))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Almost-Ring</td>
<td>(O(12n - 8))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Distributed</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>MMAR</td>
<td>(O(n + \log n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

3.7.5 Communication Overhead

Individual communication overheads in Centralized, Distributed and Almost-Ring approaches contribute to the overall communication overhead in MMAR. Whenever a packet is transmitted between two participating nodes, energy is consumed both for sending (at sender’s end) and receiving (at receiver’s end) information. This is a major issue in UWSNs. In our simulations, the base node which is assumed to float on water surface, is considered to be powered continuously.

3.7.5.1 Number of Messages

The number of messages that are exchanged in a network simulation contribute significantly to the communication overhead. Calculating number of messages taken for communication in the Multi-Metric Adaptive Routing algorithm gives a fair means of comparison to other routing algorithms. In a Centralized routing approach, for \(n \) number of nodes in the network simulation, a total of \(n-1 \) messages are sent from participating nodes to the base node.

The Almost-Ring routing approach, for \(n \) number of nodes in the network simulation, involves \(n-1 \) messages from last node to the base node. Base node signals the last node to begin the ring communication. Hence, a total of \(n \) messages are
Table III. Number of Messages Involved in Different Routing Strategies

<table>
<thead>
<tr>
<th>Routing Approach</th>
<th>Number of Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized</td>
<td>(n-1)</td>
</tr>
<tr>
<td>Almost-Ring</td>
<td>(n-1)</td>
</tr>
<tr>
<td>Distributed</td>
<td>(n-1)</td>
</tr>
<tr>
<td>MMAR</td>
<td>(n-1) (Best Case), (3n-3) (Worst Case)</td>
</tr>
</tbody>
</table>

Number of messages exchanged if the signal message is considered.

Number of messages exchanged in the Distributed routing approach is \(n-1\). Nodes in current level send their information to respective nodes in the upper (bottom-up) level numbered in a descending order. It must be observed that the number of messages exchanged in all the three algorithms is \(n-1\).

3.7.5.2 Best and Worst-Case Scenarios

The number of messages exchanged between nodes using MMAR in worst-case scenario is \(3n-3\). However, this is highly unlikely given the fact that not all nodes will have sufficient energy to propagate messages continuously using all the three routing approaches. Some nodes might have insufficient energy, some might die and some nodes might be compromised (less likely than the former two options). In the best-case scenario (less number of messages passed), \(n-1\) will be transmitted across nodes. That is, the participating nodes might lose all their energy after one routing strategy (either of Centralized or Almost-Ring or Distributed) and in no condition to continue message transmission.

It must be observed that best-case and worst-case scenarios in terms of number of messages do not necessarily reflect good performance of MMAR. All the observations regarding number of messages taken for transmission are tabulated in Table III.
3.7.6 Best-Case Scenario

3.7.6.1 Energy Constraints

The Multi-Metric Adaptive Routing algorithm’s best performance in terms of energy efficiency happens when the nodes communicate only using Almost-Ring routing approach. This is because a participating node \(n^{th} \) node, assumed to be deployed ID ordering and consecutively, sends information only to its predecessor \((n - 1)^{th} \) node. Performance is a trade-off for achieving energy efficiency.

Ideally, information delivery is delayed at the base node in the Almost-Ring routing approach because of gradual building of the information (throughout the network) and delivery ultimately at the base node. In order to find a balance between performance and delivery time, the best out of the proposed algorithm can be achieved when the routing algorithm adapts from Centralized approach to Distributed approach to Almost-Ring approach. Reliability mode offers this balance between performance and energy efficiency. Information is delivered in Greedy manner in Centralized approach and performance is achieved using Distributed and Almost-Ring approaches.

3.7.6.2 Time Complexity

The Multi-Metric Adaptive Routing algorithm is of the complexity:

\[O(n) + O(\log n) \]

where \(n \) is the number of nodes in the network simulated. This combination of time complexities is due to the presence of Distributed routing approach \(O(\log n) \) and Centralized routing approach \(O(n) \).
3.7.7 Worst-Case Scenario

The worst-case scenario of the algorithm is when the network operates in Greedy mode. In Greedy mode, all nodes are eager to send information to the base node. Hence, energy of all participating nodes is rapidly exhausted. The network will function as long as there is enough energy left at the participating nodes.

3.8 Overall Characteristics of Multi-Metric Adaptive Routing Algorithm

The main characteristics of MMAR (Multi-Metric Adaptive Routing Algorithm) are presented in detail.

1. Scalability

The performance of the proposed algorithm does not depend on or limited to the number of participating nodes. Network simulations performed in C language and Message Passing Interface (MPI) prove that the number of participating nodes can be increased in run time and the network topology is not affected under any of the Centralized, Almost-Ring, or Distributed routing approaches.

2. Power Resources

The participating nodes used in this research are assumed to be limited in power. The base node is assumed to float on water surface and is considered to be supplied with unlimited power. Hence, energy limitations do not necessarily apply to the base node.

3. Adaptive Routing

Routing in UWSNs need not follow only one strategy but can be adaptive depending on the energy resources available and other factors such as node depth. The proposed algorithm probes in to implementing different routing
approaches depending on the energy level at that instant of time, with exciting results.

4. **Multiple Metrics**

Instead of using a single metric to decide the routing strategy in UWSNs, multiple metrics are considered in MMAR algorithm. These metrics include packet age, average energy level of the network, hop count of a participating node to the base node and energy level at individual participating node(s).

5. **Data Aggregation**

Data aggregation is currently not implemented in MMAR but it does not take much effort to aggregate data at participating nodes.
A case study is performed using centralized approach to forecast red tides using Underwater Wireless Sensor Networks. A brief background about red tides, its occurrence and existing forecast methods red tides follows.

Several reports in the recent past reveal the brutal after-effects of red tide phenomenon resulting in millions of fish, whelk and oyster deaths. The vicious effects of red tides are experienced in different countries across the world including Australia, India, Italy, Guatemala, England, the United States, Canada and Brazil. Phytoplankton forms the food for higher living marine species in the hierarchy (i.e., fish etc.). Phytoplankton in large quantity displays green light attributing to the chlorophyll-a. Some phytoplankton is determined by the discoloration of water due to huge density of pigmented cells. The presence of dinoflagellates of the genus Alexandrium and Karenia makes phytoplankton look red in color. These phytoplankton which are generally referred to as 'algal blooms', are termed red tides. Reasons for the occurrence of red tides are largely unknown to the scientific community. However, few reports have attributed this to ever changing ocean temperatures in combination with lack of wind and rain.

4.1 Current Approaches to Monitor Red Tides

Current approaches to forecast red tides include research by [13], red tide detection using MODIS satellite images [33] and algal bloom forecast using ocean model
HIROMB and biogeochemical model SCOBI [34]. National Fisheries Research and Development Institute (NFRDI) of Korea began monitoring red tides in 1972. However, as red tides became more frequent in mid-1990s, they were monitored using vessel cruising, by patrolling coastal waterfront, by aircraft observation and by remote sensing. NFRDI used fuzzy modeling for analyzing meteorological factors like wind, precipitation and sun light intensity. Researchers note that the three-dimensional physical-biological models that were developed to predict red tides are highly constrained by data [13]. Three approaches based on k-nearest neighbors, random forests and support vector machines for detecting red tides utilizing MODIS satellite data are evaluated in [33]. The research in [33] focuses on distinguishing red tides from non-toxic algal blooms and other noise in satellite images.

Lake et. al present a biogeochemical and ocean forecasting model of algal blooms in Baltic Sea in [34]. High Resolution Operational Model for the Baltic Sea (HIROMB), a three-dimensional baroclinic model is used as ocean model. Swedish Coastal and Ocean BIogeochemical model (SCOBI), which is uni-dimensional, consti-
tutes the biogeochemical model that attributes for oxygen, nitrate, ammonia, phosphate, phytoplankton, zooplankton, detritus, benthic inorganic nitrogen and benthic inorganic phosphorous. Lee et. al propose HydroCast, a hydraulic pressure based anycast routing protocol to route information to surface buoys in [1]. This research uses a one-dimensional geographic anycast routing in vertical direction to the ocean surface using depth information from pressure sensor. Onboard monitoring is implemented in this research. While onboard monitoring is relatively accurate approach, field sampling is required. Human intervention is essential to monitor measurements. The measurements obtained by this approach are less time-sensitive. Most importantly, this technique largely depends on weather conditions. On a bad-weather day (storms), observing measurements ship-borne is a challenging task and almost impossible. Another approach to monitor red tides is buoy-line monitoring which requires high precision sensors. Anti-corrosion protection of sensors becomes essential and inevitable.

4.2 Contributing Factors

Forecasting red tides must not be based on a single contributing factor but it should be modeled using multiple contributing factors. Measuring all contributing factors categorized as biological, conservative and meteorological properties that trigger the red tides gives us the best way to forecast red tides.

1. Biological Properties

(a) Chlorophyll-a Concentration

The algae Karenia brevis contains the pigment chlorophyll-a. In the presence of large amounts of algae, chlorophyll-a concentration increases significantly unlike normal conditions. Chlorophyll-a levels are measured in
mg/m³. If the measurement reads 0.06 units or less, normal conditions prevail whereas fish deaths are predominant for measurements over 3 units [35]. For relatively higher levels of chlorophyll-a than normal levels, reddish water coloration occurs. This is a major influencing factor but red tides cannot be predicted based on this factor alone.

(b) **Dissolved Oxygen**

Dissolved oxygen (DO) is the amount of oxygen present in the water. Presence of algae in huge quantities reduces the oxygen available in water leading to choking of fish. Normal levels of DO range anything above 4 mg/L while DO levels are poor when below 4 mg/L. Hence, this factor should be monitored regularly ensuring ecological balance.

(c) **Dissolved or Particulate Organic Nitrogen and Phosphorous**

Good phosphate levels are strictly below 1 mg/L and phosphate levels up to 9.9 mg/L are acceptable but anything beyond 10 mg/L is not good for marine species. This imbalance is largely due to the process of eutrophication and restricts plant growth. Nitrates in water are caused by sewage and industrial runoffs. Nitrate levels should behave on par as phosphate level.

2. **Conservative Properties**

(a) **Temperature**

Some researchers have attributed changes in ocean temperature as a direct reason for red tide phenomenon. Monitoring ocean temperatures on a regular basis definitely helps in understanding marine environment and forecasting red tides.
(b) **Salinity**

EcoCheck states that red tides can occur if temperature is above 59º F, salinity lower than 5 ppt and red tide increases rapidly for higher sunlight intensity (increases algae growth due to chlorophyll) and still wind [3].

(c) **pH Levels**

pH levels range possibly from 2 to 13 in the presence of bacteria. Good measurements range between 6.5 and 8 while water inclines towards acidic behavior for pH levels below 6.5 to 0 and water behaves as a base for pH levels above 8 to 14.

(d) **Turbidity**

Turbidity is the effect of particulate material that is floating in water. Normal levels of turbidity are 10 NTU (units). High concentration of algae results in high turbid water. High turbid levels might decrease the light intensity reaching depths of ocean water which obstructs growth of aquatic vegetation underwater thereby destroying the food for fish and other species.

3. **Meteorological Properties**

(a) **Wind**

No definite quantities of light breeze or heavy wind is documented by researchers yet. However, wind in combination with other contributing factors is a lethal component for generating red tides in ocean water.

(b) **Precipitation**

Similarly, no definite levels of precipitation in ocean water guarantees red tides but when in combination with other contributing factors such as turbidity, sunlight and chlorophyll-a potentially causes red tides.
(c) **Sunlight Intensity**

Sunlight propels growth of chlorophyll-a present in the algae Karenia brevis and high intensity leads to rapid growth of algae. However, high sunlight intensity alone does not propel bloom growth but sunlight in-tandem with certain temperature and salinity ranges lead to red tides.

4.3 Forecasting Red Tides Using Underwater Wireless Sensor Networks

The satellite imagery approach captures surface using moderate-resolution cameras. These images provide the surface information such as color. The images are analyzed from time-to-time and warning is issued if there is a color change observed. This approach has several disadvantages. First, satellite imagery captures only the surface information but sub-surface information is left unexplored. Second, very high cost is involved in acquiring and using the satellite equipment. Third, images are not of great quality and need reworking before analyzing begins. Onboard monitoring is another approach to monitor red tides. Data sampling is done manually.

Using Underwater Wireless Sensor Networks is a cost-effective solution compared to satellite imagery and onboard monitoring for forecasting red tides. UWSNs are considered relatively cheap technology when developed in huge quantity. Given UWSNs’ ability to capture surface and subsurface information, it is a suitable and an affordable alternative to satellite imagery. The following sections explain the process to forecast red tides using TinyDB, TOSSIM (1st approach) and C language and MPI simulations (2nd approach).

4.3.1 Simulating Red Tide Environment - Using TinyDB, TOSSIM

Forecasting red tides using TinyDB and TOSSIM environment is quite challenging. TOSSIM simulation is supported natively by TinyOS.
Table IV. Categorized Group Values of Contributing Factors

<table>
<thead>
<tr>
<th>Contributing Factor</th>
<th>Low Value</th>
<th>Mid Value</th>
<th>High Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a (mg/m³)</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Nitrate (mg/L)</td>
<td>1</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Oxygen (mg/L)</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>pH</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Salinity (ppt)</td>
<td>31</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>Sunlight</td>
<td>15</td>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>Temperature (°F)</td>
<td>75</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Turbidity NTU</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Wind</td>
<td>10</td>
<td>16</td>
<td>25</td>
</tr>
</tbody>
</table>

Python scripts are written to estimate the values of the contributing factors such as Chlorophyll-a, Temperature, Turbidity etc. 30 nodes are used in the simulation. Nodes from 1-10 are categorized as low-group, 11-20 nodes as mid-group and 21-30 nodes as high-group. Different range of values are assigned to the three groups.

It can observed in Figure 6 that nodes 1 to 10 are given a value of 6 units, nodes 11 to 20 are assigned a value of 7 units and nodes 21 to 30 are allotted a value of 9 units. The execution of simulation scripts is explained in Appendix A.

4.3.1.1 Limitations of Forecasting Red Tides Using TinyDB and TOSSIM

This approach severely limits the estimation of contributing factors. Only one value can be estimated per one node. For a network to be termed as one, it needs to involve more than one node in operation. Data aggregation is not suitable to be performed on the simulated nodes just because the process does not support this.
Fig. 6. Simulation of Estimation Oxygen - Forecasting Red Tides Using TinyDB, TOSSIM

```python
>>> execfile("oxygen-simulation.py")

OXYGEN simulation for RED TIDE observation at PORT ARANSAS (ppm)

status: Write command: SetADCPortValueCommand [mote 1] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 2] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 3] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 4] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 5] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 6] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 7] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 8] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 9] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 10] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 11] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 12] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 13] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 14] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 15] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 16] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 17] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 18] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 19] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 20] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 21] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 22] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 23] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 24] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 25] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 26] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 27] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 28] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 29] [port 1] [value 6]
status: Write command: SetADCPortValueCommand [mote 30] [port 1] [value 6]

status: Simulation resumed
```
The values assigned to the nodes are random to be described at best. First ten nodes are assigned one value, next ten nodes are assigned another value and the following ten nodes are assigned a different value. While this not only negates the possibility of random value allocation to the nodes, the values do not change over time (to resemble actual sensor node readings). Table IV lists the group values (low, mid, high) for different contributing factors.

4.3.2 Simulating Red Tide Environment - Using C language, Message Passing Interface

C language and MPI (Message Passing Interface) is used to simulate the red tide environment. Processes used in MPI are treated as nodes in the wireless sensor network. For n simulated nodes, 0th node is the master node (termed as 'base node') and rest $n-1$ nodes are participating nodes. In this simulation, a total of eight nodes are used. Each node is loaded with values of temperature, chlorophyll-a, dissolved oxygen, turbidity, salinity, phosphate and pH levels. The nodes then send this 'sensed' information to the base node. The base node then compares the received values to the threshold values described in the Table V.

A detailed list of contributing factors and their value types (HIGH or LOW) are displayed for better understanding. After comparison, the base node displays a warning about the possibility of red tides. The user can infer the consequences from the values displayed and inform concerned authorities.
<table>
<thead>
<tr>
<th>Contributing Factor</th>
<th>Threshold Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>3 mg/m³</td>
</tr>
<tr>
<td>Nitrate</td>
<td>>10 mg/L</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td><4 mg/L</td>
</tr>
<tr>
<td>pH</td>
<td>2-13</td>
</tr>
<tr>
<td>Salinity</td>
<td><5 ppt</td>
</tr>
<tr>
<td>Sunlight</td>
<td>-</td>
</tr>
<tr>
<td>Temperature</td>
<td>>59</td>
</tr>
<tr>
<td>Turbidity</td>
<td>>10 NTU</td>
</tr>
<tr>
<td>Wind</td>
<td>-</td>
</tr>
</tbody>
</table>
CHAPTER 5

PERFORMANCE EVALUATION

Multi-Metric Adaptive Routing algorithm is implemented and evaluated using C language and MPI (Message Passing Interface). The experimental setup is described below.

5.1 Implementation

Processes can be simulated using MPI [36] and C language. MPI interface provides communication and synchronization among processes. Each process entering the simulation has its own space. A process is treated as a node in the network. All the processes form an underwater wireless sensor network. A C structure comprising of attributes related to a node is defined as above. Different functions are written for feeding information to the nodes and displaying information at base node or at a particular participating node.

5.1.1 Centralized Algorithm Implementation

Initially, all participating nodes have sufficient energy as they are deployed with full charge. Instead of finding which routing approach to implement by election and then signaling by base node, the centralized routing approach is chosen to save energy. All participating nodes send information to the base node using a tag CENTRALIZED_TAG whose value is defined as 555. The base node uses same tag to receive the information.
5.1.2 Almost-Ring Algorithm Implementation

After receiving information from participating nodes using centralized algorithm approach, depending on the condition satisfied (low metrics level) base node signals the last participating node to begin transmitting information using a ring approach. A tag, RING,SIGNAL,TAG with value 666 is used by the base node to signal the last node. The last node (n^{th} node), upon receiving the signal, sends its information to penultimate node (($n-1)^{th}$ node). The $(n-1)^{th}$ node then sends the information to $(n-2)^{th}$ node and so on until the information reaches the base node.

5.1.3 Distributed Algorithm Implementation

After receiving information from participating nodes using centralized algorithm approach, depending on the condition satisfied (medium metrics level) base node signals the last participating node to begin transmitting information using a distributed approach. A structure, links, that holds parent node, left and right child nodes is maintained. A function that calculates number of levels in the distributed layout is implemented as described.

```c
int calculateLevels(n)
{
    int levels = 0;

    while(n > 1)
    {
        levels++;
        n = n/2;
    }
```
Table VI. Number of Nodes Per Level - Four Levels Description

<table>
<thead>
<tr>
<th>Level</th>
<th>Node Identification Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2, 3</td>
</tr>
<tr>
<td>3</td>
<td>4, 5, 6, 7</td>
</tr>
<tr>
<td>4</td>
<td>8, 9, 10, 11, 12, 13, 14, 15</td>
</tr>
</tbody>
</table>

return levels;
}

After calculating the number of levels in the communication layout, parent node of each node is estimated using the code snippet shown below

```c
for(j = 0; j < ((int)pow(2, l+1) - (int)pow(2, l)); j = j+2, k++)
{
    if(node >= (int)pow(2, l)+j && node < (int)pow(2, l) + j + 2)
        destinationNode = (int)pow(2,l-1)+k; // calculate the parent of the node
}
```

The above code is iterated over the number of levels calculated. Once, the parent node is found out for a particular node, its information along with its children’s information is routed to the parent node of the participating node.

The number of nodes per level is categorized as described in Table VI.

The distributed routing approach guarantees an O(log n) performance (algorithmic complexity where n - number of nodes). As Figure 7 illustrates, if nodes 4 and 5 are present, node 2 does not send information until receiving information from both
nodes. Node 2 (parent of nodes 4, 5) includes its information along with information of nodes 4, 5 and sends it to node 1 (parent of node 2).

The participating nodes, in distributed routing layout, are distributed in powers of two. Each layer consists of

2^i nodes where i ranges from 0 to n. First layer then contains 1 node, second layer contains 2 nodes, third layer contains 8 nodes and so on. The nodes are laid out as described in the Figure 6. In a network of 8 nodes, nodes 4 and 5 send their information to node 2 whereas nodes 6 and 7 send their information to node 3. Nodes 2 and 3, in turn, send the collective information to node 1 which then corresponds with the base node.

The three constants for estimating metrics level are estimated, for ten nodes in the simulated network, as shown in Table VII.
Table VII. Node Number and Corresponding Constant Values

<table>
<thead>
<tr>
<th>Node</th>
<th>α1</th>
<th>α2</th>
<th>α3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>7</td>
<td>0.6</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>9</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

The variables used in the structure sensorNode, implemented in the simulation are listed and described in Table VIII. The information displayed includes variable type, variable name and the variable description.

5.2 Simulation Results

5.2.1 Time Taken by Participating Nodes to Send Information to the Base Node

Time taken for a node to send information to the base node is imperative in evaluating the performance of the proposed Multi-Metric Adaptive Routing algorithm. Processor time taken for the nodes to deliver the information to the base node is estimated using clock() function in C language. Start time is noted at the sender node and end time is noted at the receiver node. Difference of these times over
<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Variable Name</th>
<th>Variable Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>packetAge</td>
<td>Tracks packet duration in the network</td>
</tr>
<tr>
<td>float</td>
<td>nodeCEnergy</td>
<td>Current energy level at the node</td>
</tr>
<tr>
<td>float</td>
<td>nodeIEnergy</td>
<td>Initial energy level at the node</td>
</tr>
<tr>
<td>float</td>
<td>frequency</td>
<td>Operating frequency of the node</td>
</tr>
<tr>
<td>float</td>
<td>metrics</td>
<td>Metrics level to track the estimated metrics of the node</td>
</tr>
<tr>
<td>float</td>
<td>α_1</td>
<td>Used to calculate metrics level</td>
</tr>
<tr>
<td>float</td>
<td>α_2</td>
<td>Used to calculate metrics level</td>
</tr>
<tr>
<td>float</td>
<td>α_3</td>
<td>Used to calculate metrics level</td>
</tr>
<tr>
<td>float</td>
<td>alpha</td>
<td>Absorption Coefficient</td>
</tr>
<tr>
<td>float</td>
<td>distance</td>
<td>Distance of the node to the base node</td>
</tr>
<tr>
<td>int</td>
<td>nodeDepth</td>
<td>Depth of the node deployed to the water surface</td>
</tr>
<tr>
<td>int</td>
<td>hopCount</td>
<td>Number of hops it takes for the node to reach base station</td>
</tr>
</tbody>
</table>
Table IX. Node Number, Time Taken to Transmit Packet to Base Node - 3 Nodes

<table>
<thead>
<tr>
<th>Node ID</th>
<th>Time Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>0.02 s</td>
</tr>
<tr>
<td>Node 2</td>
<td>0.01 s</td>
</tr>
</tbody>
</table>

Table X. Node Number, Time Taken to Transmit Packet to Base Node - 5 Nodes

<table>
<thead>
<tr>
<th>Node ID</th>
<th>Time Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>0.02 s</td>
</tr>
<tr>
<td>Node 2</td>
<td>0.02 s</td>
</tr>
<tr>
<td>Node 3</td>
<td>0.02 s</td>
</tr>
<tr>
<td>Node 4</td>
<td>0.02 s</td>
</tr>
</tbody>
</table>

CLOCKS_PER_SEC gives the processor time for that particular participant node to transmit its information to the base node.

5.2.1.1 Time Calculation - Three Node Network Simulation

For a given minimum (3) number of nodes in a network, the time taken for delivery is usually same. One simulation for 3 nodes result in the time observations displayed in Table IX. The almost-ring approach implemented after the centralized approach has taken 0.02 seconds.

5.2.1.2 Time Calculation - Five Node Network Simulation

Another instance of simulation (5 nodes - 0, 1, 2, 3, 4) reveals the time observations displayed in Table X. Here, it can be noted that all nodes take 0.02 seconds to propagate information. The almost-ring approach implemented after the centralized approach has taken 0.02 seconds.
Table XI. Node Number, Time Taken to Transmit Packet to Base Node - 15 Nodes

<table>
<thead>
<tr>
<th>Node ID</th>
<th>Time Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>0.04</td>
</tr>
<tr>
<td>Node 2</td>
<td>0.03</td>
</tr>
<tr>
<td>Node 3</td>
<td>0.05</td>
</tr>
<tr>
<td>Node 4</td>
<td>0.03</td>
</tr>
<tr>
<td>Node 5</td>
<td>0.05</td>
</tr>
<tr>
<td>Node 6</td>
<td>0.03</td>
</tr>
<tr>
<td>Node 7</td>
<td>0.03</td>
</tr>
<tr>
<td>Node 8</td>
<td>0.03</td>
</tr>
<tr>
<td>Node 9</td>
<td>0.05</td>
</tr>
<tr>
<td>Node 10</td>
<td>0.05</td>
</tr>
<tr>
<td>Node 11</td>
<td>0.03</td>
</tr>
<tr>
<td>Node 12</td>
<td>0.03</td>
</tr>
<tr>
<td>Node 13</td>
<td>0.03</td>
</tr>
<tr>
<td>Node 14</td>
<td>0.03</td>
</tr>
</tbody>
</table>

5.2.1.3 Time Calculation - Fifteen Node Network Simulation

A third instance of simulation with 15 nodes reveal interesting observations in Table XI. Considerable change in the duration time for delivery can be observed in the values above. The almost-ring approach after the centralized approach, in this case, has taken 0.06 seconds.
Table XII. Node Number, Time Taken to Transmit Packet to Base Node - 50 Nodes

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>24, 1, 26, 25, 3, 21, 20, 23, 12,</td>
<td>0.03</td>
</tr>
<tr>
<td>11, 7, 15, 13, 9, 18, 2, 28</td>
<td>0.04</td>
</tr>
<tr>
<td>30, 31, 32, 29, 33, 8, 17, 5, 35,</td>
<td>0.05</td>
</tr>
<tr>
<td>36, 37, 38, 34, 39, 40, 41, 42, 43,</td>
<td>0.06</td>
</tr>
<tr>
<td>44, 45, 48, 49, 46, 47, 27, 22, 19, 10, 16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.06</td>
</tr>
<tr>
<td>14, 6</td>
<td>0.07</td>
</tr>
</tbody>
</table>

5.2.1.4 Time Calculation - Fifty Node Network Simulation

Significant difference in the time duration taken for packet transmission can be observed in the fourth instance where 50 nodes are simulated in the network in Table XII. Only some nodes are displayed that provide insightful information. It has taken 0.09 seconds to perform almost-ring communication in a network of 50 nodes.
5.3 Energy Analysis

Every node is powered initially with 100 units of power. For a packet of transmission (assumed to be 1 byte), the energy consumed is calculated using the energy model described in Section 3.5. Before a message is sent from sender to receiver, energy estimations are made and transmission is made only if there is sufficient energy left in the participating node. The variable tracking a participating node’s current energy is updated considering the initial energy at the node and energy consumed for transmitting a packet. Apart from these calculations, α (absorption coefficient) is estimated as described below

$$\alpha = 0.11 \times \frac{f^2}{(1 + f^2)} + 44 \times \frac{f^2}{(4100 + f^2)} + 2.75 \times \frac{1}{(10^4 \times f^2)} + 0.03 \quad (5.1)$$

where f - operating frequency of the participating node. Energy needed for
Fig. 9. Time Observations (Seconds) for Centralized and Almost-Ring Routing Approaches
Fig. 10. Time Observations (Seconds) for Centralized and Distributed Routing Approaches
transmitting one packet of information is calculated according to equation 3.2.

5.3.1 Factors to Consider for Energy Analysis

Energy needed to transmit a packet of information to another participating node is directly proportional to packet age. For higher packet age, more energy will be needed to transmit the packet which is quite practical. However, higher packet age would mean lower metrics. Metrics level is directly proportional to packet age which means that Almost-Ring routing approach is chosen for higher metrics level. Metrics level is also directly proportional to energy needed to transmit a packet of information and hop count to the base node from the current participating node. To get a balanced performance of MMAR, packet age is varied for Centralized, Almost-Ring and Distributed routing approaches which in turn changes energy needed to transmit a packet of information to another participating node.

5.3.2 Energy Analysis of Centralized Routing Approach

Each node is initialized with a set of values. An example set of values initialized for a node is described in Table XIII. The values displayed in Table XIII are assigned to node 0 during the initialization of values to node 1. Energy spent by a participating node to send a packet of information to the base node depends heavily on packet age (duration of the packet before delivery at destination). For a relatively high packet age of 4 seconds in a network simulation of 5 nodes, energy dissipated by node 1 is 37.965, by nodes 2 and 3 is 53.15, and by node 4 is 30.372. This variation in energy consumption for transmitting a packet is due to the values of constants ($\alpha_1, \alpha_2, \alpha_3$). Hence, the average energy left after the completion of Centralized routing approach is 45 percentage which falls under the category of choosing the Distributed routing approach. Metrics are calculated for each node but deciding next routing approach to
Table XIII. Different Variables Attributed to a Participating Node, Assigned Values

<table>
<thead>
<tr>
<th>nodeIPower</th>
<th>hopCount</th>
<th>nodeDepth</th>
<th>packetAge</th>
<th>frequency</th>
<th>distance</th>
<th>α_1</th>
<th>α_2</th>
<th>α_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 units</td>
<td>14</td>
<td>6 m</td>
<td>4 s</td>
<td>25 KHz</td>
<td>6 m</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

fetch data based on metrics level is a challenging (and near impossible) task because every node has different metrics level. Whereas, average energy level of the network gives a fair idea of energy available at the nodes and routing strategy chosen based on average energy level suits UWSNs.

Hence, depending on the average energy level %, a suitable routing approach is chosen. Distributed routing approach is chosen for simulations where average energy level of the network, after Centralized routing implementation, falls between 33% and 64% else Almost-Ring routing algorithm is chosen.

5.3.3 Energy Analysis of Almost-Ring and Distributed Routing Approach

The almost-ring routing approach is expected to take less energy than the Centralized approach. This is due to the fact that a participating node sends information to its immediate participating node. Participating nodes are assumed to be deployed in consecutive order. Packet age is changed as it is the time taken from sender to destination where a packet is delivered as a participating node transmits information to its nearest (predecessor) node.

For a minimum value of α_3 (0 to 0.3), Figure 5.3.3 shows energy required per packet to packet age. It must be observed that as energy required per packet increases, total energy available in the network will reduce correspondingly. Hence, average energy level in the network is inversely proportional to energy spent to transmit information to other nodes.
5.4 Comparison to Other UWSN Routing Algorithms

Depth-Based Routing [3] relies on only one metric, namely, depth of the node deployed. MMAR bases its decision considering several factors like packet age, hop count and distance between nodes. After estimating the energy required for transmitting information, the average energy level of the network is estimated. Then, a routing strategy will be adapted based on the average energy level of the network over all.
Table XIV. Comparison of Different UWSN Routing Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Delivery Ratio</th>
<th>Energy Consumption</th>
<th>Event Synchronization</th>
<th>Processing</th>
<th>Multiple-Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAR</td>
<td>N/A</td>
<td>Medium</td>
<td>Logical Clock</td>
<td>Linear</td>
<td>Yes</td>
</tr>
<tr>
<td>DBR [3]</td>
<td>High</td>
<td>High</td>
<td>No</td>
<td>Medium</td>
<td>No</td>
</tr>
<tr>
<td>VBF [8]</td>
<td>Medium</td>
<td>Medium</td>
<td>No</td>
<td>Medium</td>
<td>No</td>
</tr>
<tr>
<td>HH-VBF [25]</td>
<td>High</td>
<td>Medium</td>
<td>No</td>
<td>Medium</td>
<td>No</td>
</tr>
</tbody>
</table>

Table XV. Percentage of Energy Consumed by Nodes in Centralized Routing Approach

<table>
<thead>
<tr>
<th>Node Number</th>
<th>% Energy Consumed for Sending Data</th>
<th>Packet Age - 1</th>
<th>% Energy Consumed for Sending Data</th>
<th>Packet Age - 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 1</td>
<td>22.78</td>
<td>2</td>
<td>53.15</td>
<td>6</td>
</tr>
<tr>
<td>Node 2</td>
<td>37.96</td>
<td>2</td>
<td>68.33</td>
<td>6</td>
</tr>
<tr>
<td>Node 3</td>
<td>37.96</td>
<td>2</td>
<td>68.33</td>
<td>6</td>
</tr>
<tr>
<td>Node 4</td>
<td>15.18</td>
<td>2</td>
<td>45.55</td>
<td>6</td>
</tr>
</tbody>
</table>

The effect of packet age on energy consumed in Almost-Ring routing approach to send data is presented graphically in Figure 12.

Significant amount of energy is consumed in Centralized routing approach to transmit information from participating nodes to the base node. On the other hand, participating nodes consume relatively less energy for transmitting information to

Table XVI. Percentage of Energy Consumed by Nodes - Almost-Ring Routing Approach

<table>
<thead>
<tr>
<th>Node Number</th>
<th>% Energy Consumed for Sending Data</th>
<th>Packet Age - 1</th>
<th>% Energy Consumed for Sending Data</th>
<th>Packet Age - 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 1</td>
<td>3.79</td>
<td>0.5</td>
<td>6.83</td>
<td>0.9</td>
</tr>
<tr>
<td>Node 2</td>
<td>3.79</td>
<td>0.5</td>
<td>6.83</td>
<td>0.9</td>
</tr>
<tr>
<td>Node 3</td>
<td>3.79</td>
<td>0.5</td>
<td>6.83</td>
<td>0.9</td>
</tr>
<tr>
<td>Node 4</td>
<td>3.79</td>
<td>0.5</td>
<td>6.83</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Fig. 12. Increase in Energy Consumption with Packet Age

Table XVII. Dependence of Performance of Routing Approaches on Factors Involved

<table>
<thead>
<tr>
<th>Routing Approach</th>
<th>Packet Age</th>
<th>Node Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH-VBF [25]</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VBF [8]</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>MMAR</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
the base node using Distributed and Almost-Ring routing approaches. Percentage of energy spent by participating nodes in the three routing approaches is tabulated in Table XV, XVI. Node density affects performance in [25]. Even though more paths are available for data delivery, more energy overhead is involved. MMAR sees no such increase in energy with increase in node density. Instead, more energy per packet of information is required if packet age increases. Also, it must be noted that MMAR does not consider node mobility in its implementation. Table XVII lists the relation between performance of routing approaches to the factors, such as packet age and node density, involved. Time taken for delivery in Centralized routing approach is better than in Almost-Ring and Distributed routing approaches but the amount of energy consumed is vice-versa.

5.4.1 MMAR Performance Comparison with DBR and VBF Protocols

The performance of MMAR is compared with DBR protocol [3] and VBF protocol [8]. Depth-Based Routing (DBR) protocol assumes geographical location of the nodes similar to MMAR protocol. Sink-sink communication is not addressed in DBR similar to how communication between base nodes is not addressed in MMAR. Nodes in DBR send information to sinks in a greedy approach. Vector-Based Forwarding (VBF) protocol uses source coordinates to calculate the position of current receiving node.

In DBR protocol, Priority Q and Packet History Buffer are used at each node. Priority Q is used to decrease the number of forwarding nodes. Packet History Buffer helps node decide not to send packets redundantly. MMAR does not use additional buffers such as Priority Q and Packet History Buffer. While this saves communication overhead at MMAR, it is a disadvantage that a history buffer is not implemented in MMAR. Packet redelivery mechanism is available in VBF and DBR but not in MMAR. Though it is advantageous to have packet redelivery mechanism, it can lead
Table XVIII. Comparing DBR, MMAR and VBF

<table>
<thead>
<tr>
<th>Attribute</th>
<th>DBR</th>
<th>MMAR</th>
<th>VBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Overhead</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Best-Case Complexity</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Worst-Case Complexity</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Flooding of INTEREST packet</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Packet Re-delivery</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Messages</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Messages for Protocol Initialization</td>
<td>1</td>
<td>0 (Centralized), 1 (Distributed, Almost-Ring)</td>
<td>$n+1$</td>
</tr>
</tbody>
</table>

to congestion, collision and more number of message transmissions. VBF uses flooding technique to initiate the routing. Based on the source position, sink node transforms its coordinates. $n+1$ messages are used in VBF to initiate the protocol. MMAR scores over DBR and VBF in this aspect. However, packet loss is not addressed in MMAR. Number of messages taken for initializing respective protocols is shown in Figure 13. It can be observed from the above performance evaluations that the proposed Multi-Metric Adaptive Routing algorithm is comparable to other routing protocols.
Fig. 13. Number of Messages to Initialize Protocol - 5 nodes
CHAPTER 6

FUTURE RESEARCH DIRECTIONS

Based on current research work to develop a Multi-Metric Adaptive Routing algorithm for underwater wireless sensor networks, possible future research directions are discussed in the following.

- **Simulations in Different Environments**

 In C and MPI simulations, the issue of contention is already taken care of as there is no competition for the resources. Ideally, messages must be transmitted without collision and congestion. However, in real-world scenarios, synchronization of messages is a major issue. Simulating Multi-Metric Routing algorithm in multiple environments offers a new perspective on its performance in real-world scenarios. Moreover, conclusive comparisons can be made with other routing algorithms.

- **Power Resources**

 Base node is assumed to be powered continuously in current implementation of MMAR. However, in real-world applications, it may not be feasible to remotely power nodes deployed on water surface. Moreover, base nodes need not be floating on water surface as they can be underwater as well. Powering nodes in such a scenario is extremely challenging as wired connections may not be an ideal solution to energize nodes in underwater environments. Another reason to ponder over this is that solar energy might not be applicable in UWSNs as little sunlight reaches deep water consistently.
• **Time Synchronization**

Current implementation of MMAR does not look at synchronizing messages considering the delays and disruptions in the underwater environment. Despite the fact that an event synchronization mechanism is implemented using Lamport’s logical clock, it must be observed that time synchronization is different from event synchronization. A robust UWSN might be undesirable without time synchronization mechanism.

• **Network Reconfiguration**

MMAR works well until a node is compromised or dies. When the nodes are not in expected topology as described in Section 3.3, the receiving participating node waits endlessly hoping for the sender to transmit information which never happens. This deadlock situation must be solved using a network recovery algorithm.

• **Security**

The security of an UWSN has not been addressed in this thesis. Securing communication in underwater environments is definite future research direction. Currently, lightweight mechanisms for securing communication in WSNs such as TinyPBC [37] are in place. However, a lightweight security scheme must be developed that considers the low-energy necessities and realities of an UWSN. Further research can be focused on addressing situations when a base node or a participating node is under attack from an intruder.

• **Base node selection**

Base node selection can also be explored further. Floating node(s) need not be base node(s) by default. Nodes deployed in the water can be base nodes as well. They can be selected based on the ratio of the energy currently available to the
energy initially available. Another approach to select the base node is to assign the node in the network with highest metrics level as the base node.

- **Compatibility with Heterogeneous Networks**
 At some point of time, information transmitted to the base node by participating nodes must be sent to a data center. Developing suitable technology to update database wirelessly using Internet is a viable option. However, the economics of building such a technology must be thoroughly researched before venturing in. Apart from the ability to connect to the world via the Internet, feasible technology must be in place to interact with other ocean monitoring systems such as satellite imagery and buoy monitoring for effective and conclusive results.

- **Cluster-head Selection**
 Clusters can be formed by grouping nodes together. These clusters can choose a cluster-head based on defined metrics. Without burdening a single node with the responsibilities of a cluster-head, the functionalities of a cluster-head can be shared with other nodes by choosing another node as cluster-head after determined time period. Ultimately, all cluster-heads report to the base node. Adaptive cluster-head selection for terrestrial wireless sensor networks has been discussed in [38].

- **Node Mobility**
 Our research does not consider node mobility in to account while developing the routing strategy. Mobi-Sync research estimates velocity of nodes in underwater environments [2]. This research can be used in improving the Multi-Metric Adaptive Routing algorithm. Research in node mobility also extends scope for further research in message and time synchronization that assists in addressing
congestion control in underwater environment.

- **Localization**
 Localization is more challenging in UWSNs compared to terrestrial WSNs considering the lack of resources to re-energize deployed nodes. Finding the position of deployed nodes in real-time is a major issue hindering routing for location-based approaches. Every issue must be addressed within the bounds of efficient hardware and software.

- **Data aggregation**
 Data aggregation definitely can save energy and result in a longer life time periods for the network as a whole. Data aggregation is another definite future research direction for building a robust UWSN with a comprehensive routing strategy. More conclusive results can be obtained if simulations can be performed using the NS-2 or OMNET++ simulators.
CHAPTER 7

CONCLUSION

A novel routing algorithm for underwater wireless sensor networks has been proposed. This Multi-Metric Adaptive Routing algorithm considers multiple metrics such as depth of the node deployed, packet age, energy level at the node, average energy level in the network and hop count of a node to the base node. The routing strategy is dynamic depending on the mentioned metrics. The possible routing techniques are centralized, distributed and almost-ring approaches. The time taken for message transmission for network simulation ranging from 5 to 50 nodes has been observed and reported. Energy analysis of the participating nodes has also been performed. Algorithmic complexities of Centralized, Almost-Ring, Distributed routing approaches and Multi-Metric Adaptive Routing algorithm have been presented. The overall complexity of MMAR is reported as $O(\log n) + O(n)$ and $O(n)$ for large values of n. Further, communication and space complexities of the proposed routing algorithm have been detailed. Number of messages taken is $O(n)$ for Centralized, Distributed and Almost-Ring routing approaches. In the worst case scenario, MMAR takes $O(3n - 3)$ messages and $O(n - 1)$ messages. Event synchronization is implemented using Lamport’s logical clock. MMAR takes advantage of its implementation in C language and MPI and exploits the extension of logical clock support in distributed systems. A comparison of MMAR with DBR and VBF protocols has been performed. Additionally, a case study has been presented to forecast red tides and results are detailed. Two approaches to forecast red tides using UWSNs are proposed in the case study. The first approach is using TinyDB and TOSSIM simulations which have
the native support of TinyOS, widely used software for sensor nodes, but cannot simulate more than one value at a time. The second approach to forecast red tides is by using C language and Message Passing Interface. The second approach can estimate multiple values per node but C language is not supported natively by TinyOS.
REFERENCES

APPENDIX A

FORECASTING RED TIDES USING TINYDB AND TOSSIM

The discussed contributing factors are the primary reason for causing red tides in water. Contributing factors that are considered for this research include temperature, salinity, turbidity, dissolved oxygen, pH, sunlight, nitrate, chlorophyll-a and wind. Python scripts are written to simulate contributing factors. Cygwin, Windows XP, TinyOS, TOSSIM and TinyDB are primarily used for this simulation. This tutorial explains how to forecast red tides using underwater wireless sensor networks using TOSSIM, TinyDB environments by loading TinyDB application, simulation interface and executing scripts in that order. This tutorial does not explain extracting information after querying using TinyDB graphical user interface. The following steps are implemented to simulate the network that forecasts red tides.

Step 1

Copy all the script files to the folder `$TOSROOT/tools/java/net/tinyos/sim`

Step 2

Copy the Java file to the folder `$TOSROOT/tools/java/net/tinyos/tinyos/tinydb` that queries TinyDB and adds the out-coming result to a vector.

The files need to be copied only once. Then, these steps need to be executed (in Cygwin window)

1. **TinyDBApp**

 Execute these commands in a Cygwin window.

   ```
   cd $TOSROOT/apps/TinyDBApps
   ```
export DBG=usr1
build/pc/main.exe 31

The above commands open the simulation interface.

2. **TinyDBMain**
 Execute these commands in a second Cygwin window.

 cd ’\$TOSROOT/tools/java’
 java net.tinyos.tinydb.TinyDBMain -sim

 The above commands execute TinyDB application.

3. **Execute Scripts**
 Tython environment is opened to execute scripts.

 cd $TOSROOT/tools/java/net/tinyos/sim
 java -jar simdriver.jar
 (in Tython environment) from simcore import *
 execfile("oxygen-simulation.py")
APPENDIX B

MULTI-METRIC ADAPTIVE ROUTING ALGORITHM - CODE SNIPPETS

Multi-Metric Adaptive Routing algorithm implements different routing approaches based on the metrics calculated and the average energy level in the network. This section shows important code snippets in the developed algorithm.

`snode` is a structure implemented in C++. The structure definition including variables follows.

```c++
typedef struct
{
float packetAge; // Packet duration in the network before delivery
float nodeCEnergy; // Current energy level of the node
float nodeEnergy4Packet; // Energy required for a packet transmission
float nodeIEnergy; // Initial energy available at the node
float nodeIPower;
float spreadingFactor; // Spreading factor = 1/1.5/2
float frequency; // Operating frequency of the node
float metrics; // Metrics level estimation variable
float const1, const2, const3; // Constants used to estimate metrics
float alpha; // Frequency coefficient
float distance; // Distance of a node to base node
int nodeDepth; // Depth at which node is deployed
int hopCount; // Number of hops needed to reach base node from current node
int info;
} message;
```
message snode;

7.1 Distributed Routing Approach

The participating nodes are assigned levels in the Distributed routing approach in the following way.

for(j=0; j< ((int)pow(2,l+1) - (int)pow(2,l)); j=j+2,k++)
{
 if(node >= (int)pow(2,l)+j && node < (int)pow(2,l)+j+2)

 destination = (int)pow(2,l-1)+k;

}

Messages are sent from child participating nodes to parent participating nodes in the following way.

if(nodeLinks.child1 != -1)
{
 // Recieve from child 1
 (MPI_Recv(&snode, sizeof(sensorNode), MPI_BYTE, nodeLinks.child1, PARENT_TAG,
 MPI_COMM_WORLD, &status);
}

if(nodeLinks.child2 != -1)
{
 // Recieve from child 1
 MPI_Recv(&snode, sizeof(sensorNode), MPI_BYTE, nodeLinks.child2, PARENT_TAG,
 MPI_COMM_WORLD, &status);
}
where PARENT_TAG is 222.

7.2 Almost-Ring Routing Approach

The start of Almost-Ring routing approach is signalled by the base node to the last node in the simulation.

```c
if(node == 0)
{
    // Send Signal to Last Node to begin Ring Communication
    MPI_Send(&snode, sizeof(message), MPI_BYTE, size-1, RING_SIGNAL_TAG,
             MPI_COMM_WORLD, &status);
}

if(node == (size-1))
{
    // Get Signal from Node 0 to begin Ring Communication
    MPI_Recv(&snode, sizeof(message), MPI_BYTE, 0, RING_SIGNAL_TAG,
              MPI_COMM_WORLD, &status);
}
```

where RING_SIGNAL_TAG is 666.

7.3 Energy and Metrics Calculations

```c
snode.alpha = 0.11*f*f/(1 + f*f) + 44*f*f/(4100 + f*f) + 2.75/(pow(10,4)*f*f
 + 0.03); // Thorp's Expression
snode.nodeEnergy4Packet = snode.nodeIPower*snode.packetAge*
(pow(snode.distance,snode.spreadingFactor))*(pow(snode.alpha,snode.distance));
snode.metrics = snode.const1*snode.packetAge + snode.const2*snode.nodeEnergy4Packet
 + snode.const3*snode.hopCount;
```