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ABSTRACT

This project is the design and implementation of a mini-language
interpreter which is implemented with a windows type interface. The
mini language is Core. The interpreter will be used to teach students
at Texas A&M - Corpus Christi the concepts of programming without

limiting the students to a particular language.



1.0 Mini-languages

A mini-language is a programming language with limited
functionality, syntax, and semantics. It may be a subset of a general
language or a small language in its own right. Mini-languages are
useful in teaching students to develop skills involving the design of
programming languages. Mini-languages contain basic control structures
found in all procedural programming languages. A mini-language allows
students to study the workings of control structures without having to
deal with the nuances of a fully functional language. Mini-languages
allow the programmer to study programming languages with severe
constraints on language flexibility.

Creating an interpreter for the mini-language Core will allow
programmers to fully implement and test the limits of this language. The
interpreted mini-language allows teaching students how to recognize
syntax vs semantic errors when programming. The X-Windows System
interface will provide ease of use, allowing the programmer to
concentrate on the mechanisms of the language rather than the
intricacies of the interpreter. The implementation of this interpreter
will also allow programmers to study the utilization of Unix tools to
create an interpreter and possibly find better ways of writing

interpreters.

1.1 Description of Core Mini-language

Core is a Pascal-like mini-language with limited functionality
developed by Marcotty and Ledgard. Variables can be only positive
integers. Variable names must be capital letters with an optional
underscore anywhere after the first letter. There are two control
structures - an “if then else” selector and a “while” loop. Core uses a
“not equals” symbol (#) for comparison that is not implemented on an

ASCII keyboard, therefore the C convention of “not equals” (1=) is used.



Core has an assignment operator (:=) and a compare operator (=) that are
be handled in the interpreter. Comparison operations for the language
also include greater/less than (>/<). Core contains the mathematical
operations multiplication (*), addition (+), and subtraction (-).

Core has six semantic and syntax error conditions that can lead to
an early termination of the program. The undefined value error occurs
when the variable has not been declared but is assigned an integer value
in the program. The overflow error occurs when values applied to a math
operator exceed the capacity of the machine to handle the result. The
negative value error occurs during subtraction when the result of the
operation is not positive, as Core can only handle positive values. A
negative value entry will be a syntax error. Insufficient data error
occurs when the variable has been declared but never assigned a value.
The size error occurs when the size of the integer being used exceeds
the capacity of the machine on which it is running. The illegal
character error occurs when the syntax rules are violated such as a
digit within a variable name or a lower case letter. The context free

syntax in Backus-Naur Form (BNF) is illustrated in Figure 1.1.



<program> = program
<declaration-sequence>
begin
<statement-sequence>
end ;
<declaration- = <declaration>
sequence> [ <declaration><declaration-sequence>

<statement-sequence>

<statement>
<statement><statement-sequence>

<declaration> = <identifier-list> integer ;
<identifier-list> 1= <identifier>

| <identifier> , <identifier-list>
<statement> - <assignment-statement>

| <if-statement>

| <loop-statement>

| <input-statement>

] <output-statement>
<assignment- 1= <identifier> := <expression> ;
statement>

<if-statement>

if <comparison> then
<statement-sequence>

end if ;

if <comparison> then
<statement-sequence>

else
<statement-sequence>

end if ;

<loop-statement>

while <comparison> loop
<statement-sequence>
end loop ;

<input-statement>

input <identifier-list> ;

<output-statement>

output <identifier-list> ;

<comparison> = ( <operand><comparison-operator><operand>
<expression> 1= <factor>
| <expression> + <factor>
| <expression> - <factor>
<factor> 1= <operand>
| <factor> * <operand>
<operand> rr= <integer>
<identifier>
( <expression> )
<comparison- = [<T=1T1'1"=1>
operator>
<identifier> = <letter>
<identifier><letter>
<identifier> _ <letter>
<integer> = | <digit> | <integer><digit>
<letter> - {a|B|C|DJE]|]F|G|]RBH|I]J]|K
L|{M|N|joOo|P|Q|R|S|T|UI]V
W X Y YA
<digit> - [0 | 1| 2| 3]4]5]6]7181]659

Figure 1.1,

Context Free Syntax of Mini-Language Core in BNF




1.2 Tools for Building Interpreter

The project also involves the use of the lex and yacc Unix tools to
create the interpreter. Lex is used solely to perform lexical analysis
and pass tokens to yacc. Yacc has the grammar rules for the language to
be interpreted and repeatedly calls lex so that the syntax can be
checked. The main program is included in yacc to allow for error
checking. The X-Windows System is integrated into the main program in

yvacc to produce the windows interface.



2.0 Steps to Complete the Project

1. Syntax expressions.

2. vVariable checking with hash table.

3. Assignment statements and math operations.
4. If statements and compares.

5. While loop.

6. Input and output statements.

7. Test.

2.1 Writing the Syntax expressions for Core

Syntax expressions for a mini-language enforce the checking for
basic errors which can be anything from a keyboard errxor to a wording
error as simple as not ending the program with the word end. The yacc
generated parser takes the tokens from lex and fits them into the
expression. If there is a token that is not found in the expression, a
syntax error is given by yacc and the program is halted. Syntax rules
for Core also require that reserved words be in lowercase while all
variables are in uppercase.

Passing reserved words and math and comparison operators from lex
to yacc was the first task. The simplest lex specification is shown in

Figure 2.1.

%%

program return PROGRAM;
begin return BEGINS;
end return END;

R return SEMICOLON;
%%

Figure 2.1. Simplest Lex Program.

To run the file in Figure 2.1, save the file with a “.1”
extension. The filename used to save the lex is specl.l Then use the
unix command lex specl.l. This creates the file lex.yy.c. This file is
then included in the yacc program.

For the Core program the lex file returns upper case versions of
the reserved words to distinguish between tokens and variables in the

yacc program, shown in Figure 2.2.





