Table of Contents

Introduction and Background

1.0
1.1
1.2

Mini-languages
Description of Core Mini-language
Tools for Building Interpreter

Building the Interpreter

2.

NN
LW - O

Steps to Complete the Project

Writing the Syntax Expressions for Core
Variable Checking With Hash Table in Core
Assignment Statements and Math Operations
If Statements and Compares

While Loop

Input and Output Statements

Interpreter Testing

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Testing the Program

The Fibonacci Series

The Time Conversion Program

The Variable Not Declared Error

The Variable Already declared Error
The Negative Value Error

The Variable Not Initialized Error
The Syntax Errors

The Size And Overflow Errors

The Never Ending While Loop

Creating X-Windows

S

E NN
=W N2 O

Summary
5.0

Appendix

Code

X-windows

Writing Calls

The Quit Function

The Cut-Paste Function
The Do-Parse Function

Summary and Future Work

N

16
22
28
34
36

41
41
41
42
44
44
45
46
47
48
49

51
51
51
52
52
53

55
51

.10

11

.12

.13

.14

.15

.16

.17

.18

.19

.20

.21

.22

.23

.24

.25

.26

List of Figures
Context Free Syntax of Mini-Language Core in BNF
Simplest Lex Program
Expanded Lex Program
Variable Definition
Returning Assignment Operators
Defining Math Operators
Complete Core Grammar
Simple Yacc Program to Check Syntax
Defining Syntax Order
Yacc Syntax Expansion
Core With Declaration Statements
Expansion of Statement Variable
Adding Variables to Input and Output Strings
Demonstrate Input and Output Statements
Breakdown of Math Expressions
Expanded If Statement in Yacc
Expansion of Whilelp Variable
Complete Lex and Yacc for Expression Checking
Complete Data File for Syntax Expression Checking
Structure for Hash Table
Create the Hash Table
Function to Return Pointer From Hash Table
Function to Check If Variable in Hash Table
The Dec Subdivision
The Decvar Subdivision
Variable Not Declared, Within Decvar
The Iovar Subdivision

II

10

10

11

11

12

12

13

15

16

16

17

17

18

19

19

20

21

.27

.28

.29

.30

.31

.32

.33

.34

.35

.36

.37

.38

.39

.40

.41

.42

.43

.44

.45

.46

.47

.48

.49

.50

.51

.52

.53

.54

Variable Checking in Assignment Statement
Variable Checking in Operand Subdivision
Various Types of Assignment Statements
Assign New Value Function

Assign Negative Value Function

Using Assign Negative Value Function

Get Value Function

The Math Expansion

Expansion of Factor

Leftbrace exp Rightbrace

Determining First Variable in an Assignment
Datafile For Complex Assignments

True or False Function

Complete comp Subdivision

Example of If Statement

Assigning Statement Type

Incrementing Current Level

Adding The Block Variable

The End If Switch Subdivision

The Else Switch

The Elses Subdivision

Using the F-Tell Function

The While Switch Expansion

The End Switch Expansion

The Iovar Expansion

Use of the Get vValue Function

Opening the File for Input

Assigning to HashTable From Input Statement

III

21

22

22

23

23

24

24

25

25

26

27

28

29

30

30

31

31

32

33

33

34

34

35

36

37

37

38

39

.55

.10

11

.12

.13

.14

.15

.16

.17

.18

.19

Completed Iovar Expansion

Fibonacci Series Program

Qutput From Fibonacci Series

Time Conversion Program

Output Time Conversion Program

Program For Variable Not Declared Error
Output for Figure 3.5

Program for Variable Already Declared Error
Output for Figure 3.7

Program for Negative Value Syntax Error
Output for Figure 3.9

Program for Negative Value Error

Output for Figure 3.11

Program for Variable Not Initialized
OQutput for Figure 3.13

Syntax Errors

Finding the Maximum Integer Allowed
Size Error

More Size Errors

Overflow Error Output

Main Window of the Interpreter

Function Declarations

Declaration of the Callbacks

Quit Function

Cut and Paste Function

The Do-Parse Function

v

40

41

42

43

44

44

44

45

45

45

46

46

46

47

47

48

48

48

49

49

51

52

52

52

53

54

ABSTRACT

This project is the design and implementation of a mini-language
interpreter which is implemented with a windows type interface. The
mini language is Core. The interpreter will be used to teach students
at Texas A&M - Corpus Christi the concepts of programming without

limiting the students to a particular language.

1.0 Mini-languages

A mini-language is a programming language with limited
functionality, syntax, and semantics. It may be a subset of a general
language or a small language in its own right. Mini-languages are
useful in teaching students to develop skills involving the design of
programming languages. Mini-languages contain basic control structures
found in all procedural programming languages. A mini-language allows
students to study the workings of control structures without having to
deal with the nuances of a fully functional language. Mini-languages
allow the programmer to study programming languages with severe
constraints on language flexibility.

Creating an interpreter for the mini-language Core will allow
programmers to fully implement and test the limits of this language. The
interpreted mini-language allows teaching students how to recognize
syntax vs semantic errors when programming. The X-Windows System
interface will provide ease of use, allowing the programmer to
concentrate on the mechanisms of the language rather than the
intricacies of the interpreter. The implementation of this interpreter
will also allow programmers to study the utilization of Unix tools to
create an interpreter and possibly find better ways of writing

interpreters.

1.1 Description of Core Mini-language

Core is a Pascal-like mini-language with limited functionality
developed by Marcotty and Ledgard. Variables can be only positive
integers. Variable names must be capital letters with an optional
underscore anywhere after the first letter. There are two control
structures - an “if then else” selector and a “while” loop. Core uses a
“not equals” symbol (#) for comparison that is not implemented on an

ASCII keyboard, therefore the C convention of “not equals” (1=) is used.

Core has an assignment operator (:=) and a compare operator (=) that are
be handled in the interpreter. Comparison operations for the language
also include greater/less than (>/<). Core contains the mathematical
operations multiplication (*), addition (+), and subtraction (-).

Core has six semantic and syntax error conditions that can lead to
an early termination of the program. The undefined value error occurs
when the variable has not been declared but is assigned an integer value
in the program. The overflow error occurs when values applied to a math
operator exceed the capacity of the machine to handle the result. The
negative value error occurs during subtraction when the result of the
operation is not positive, as Core can only handle positive values. A
negative value entry will be a syntax error. Insufficient data error
occurs when the variable has been declared but never assigned a value.
The size error occurs when the size of the integer being used exceeds
the capacity of the machine on which it is running. The illegal
character error occurs when the syntax rules are violated such as a
digit within a variable name or a lower case letter. The context free

syntax in Backus-Naur Form (BNF) is illustrated in Figure 1.1.

<program> = program
<declaration-sequence>
begin
<statement-sequence>
end ;
<declaration- = <declaration>
sequence> [<declaration><declaration-sequence>

<statement-sequence>

<statement>
<statement><statement-sequence>

<declaration> = <identifier-list> integer ;
<identifier-list> 1= <identifier>

| <identifier> , <identifier-list>
<statement> - <assignment-statement>

| <if-statement>

| <loop-statement>

| <input-statement>

] <output-statement>
<assignment- 1= <identifier> := <expression> ;
statement>

<if-statement>

if <comparison> then
<statement-sequence>

end if ;

if <comparison> then
<statement-sequence>

else
<statement-sequence>

end if ;

<loop-statement>

while <comparison> loop
<statement-sequence>
end loop ;

<input-statement>

input <identifier-list> ;

<output-statement>

output <identifier-list> ;

<comparison> = (<operand><comparison-operator><operand>
<expression> 1= <factor>
| <expression> + <factor>
| <expression> - <factor>
<factor> 1= <operand>
| <factor> * <operand>
<operand> rr= <integer>
<identifier>
(<expression>)
<comparison- = [<T=1T1'1"=1>
operator>
<identifier> = <letter>
<identifier><letter>
<identifier> _ <letter>
<integer> = | <digit> | <integer><digit>
<letter> - {a|B|C|DJE]|]F|G|]RBH|I]J]|K
L|{M|N|joOo|P|Q|R|S|T|UI]V
W X Y YA
<digit> - [0 | 1| 2| 3]4]5]6]7181]659

Figure 1.1,

Context Free Syntax of Mini-Language Core in BNF

1.2 Tools for Building Interpreter

The project also involves the use of the lex and yacc Unix tools to
create the interpreter. Lex is used solely to perform lexical analysis
and pass tokens to yacc. Yacc has the grammar rules for the language to
be interpreted and repeatedly calls lex so that the syntax can be
checked. The main program is included in yacc to allow for error
checking. The X-Windows System is integrated into the main program in

yvacc to produce the windows interface.

2.0 Steps to Complete the Project

1. Syntax expressions.

2. vVariable checking with hash table.

3. Assignment statements and math operations.
4. If statements and compares.

5. While loop.

6. Input and output statements.

7. Test.

2.1 Writing the Syntax expressions for Core

Syntax expressions for a mini-language enforce the checking for
basic errors which can be anything from a keyboard errxor to a wording
error as simple as not ending the program with the word end. The yacc
generated parser takes the tokens from lex and fits them into the
expression. If there is a token that is not found in the expression, a
syntax error is given by yacc and the program is halted. Syntax rules
for Core also require that reserved words be in lowercase while all
variables are in uppercase.

Passing reserved words and math and comparison operators from lex
to yacc was the first task. The simplest lex specification is shown in

Figure 2.1.

%%

program return PROGRAM;
begin return BEGINS;
end return END;

R return SEMICOLON;
%%

Figure 2.1. Simplest Lex Program.

To run the file in Figure 2.1, save the file with a “.1”
extension. The filename used to save the lex is specl.l Then use the
unix command lex specl.l. This creates the file lex.yy.c. This file is
then included in the yacc program.

For the Core program the lex file returns upper case versions of
the reserved words to distinguish between tokens and variables in the

yacc program, shown in Figure 2.2.

