CORPUS CHRISTI - NUECES RIVER OBSERVATION NETWORK

CC-NRON

GRADUATE PROJECT

BY
BARBARA F. DU FRAIN
December 10, 1998

COMMITTEE MEMBERS

Dr. Patrick Michaud, Chairman

Dr. Gary Jeffress, Member

Dr. Stephen Dannelly Member
ACKNOWLEDGEMENTS

The water planners, geographic information sciences professionals whose philosophies and knowledge provided ideas incorporated within this graduate report:

Stephen Densmore, State Hydrologist, Texas Water Development Board,

James Dodson, Regional Director, Coastal Bend Division, Nueces River Authority,

Rocky Freund, Chairperson, Comprehensive Data Management Plan, Texas A&M-CC, and

Ed Garana, Water Superintendent, City of Corpus Christi, Texas.

Thank You,
Barbara F. DuFrain
Table Of Contents

Abstract

1. Background and Rationale
 1.1 Current Situation
 1.2 Data Analysis Cycle
 3
2. Narrative
 2.1 Introduction
 2.2 System Description
 2.3 User Interface
 12
3. Project Environment
 3.1 Hardware
 3.2 Software
 3.3 Programming Languages
 3.4 Interfaces
 3.5 Targeted User Organizations
 22
 29
4. Procedures
 4.1 Phase I. STNRG Spatial Data Coverage
 4.2 Phase II. CC-NRON ArcView Project
 4.3 Phase III. Near-Real-Time Data Collection
 4.4 Phase IV. CC-NRON Installation
 33
 36
5. Conclusion
 40
 42
6. Expected Benefits
 44
 45
Appendix A. South Texas Natural Resources Geographic Database
Appendix B. CC-NRON ArcView
Appendix C. ODBC Steam flow Processing
Appendix D. System Test and Results
Appendix E. Program Listings
Appendix F. Web site
 http://www.sci.tamucc.edu/~bfd2543/ccron/ccronhome.html
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>South Texas Area</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Corpus Christi River Systems</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Between Choke Canyon Reservoir and Corpus Christi</td>
<td>8</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Stream Gage Data</td>
<td>9</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Station 08206600 Hydrograph</td>
<td>10</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Global View of the Nueces River Observation Network</td>
<td>14</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Counties and Streams</td>
<td>15</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Rivers and Gages</td>
<td>16</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Three Day Summary Map</td>
<td>17</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Nueces River at Cotulla</td>
<td>18</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Labeling Rivers in South Texas Area</td>
<td>19</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Frio River Textual Information Metadata</td>
<td>20</td>
</tr>
<tr>
<td>Figure 13</td>
<td>CC-NRON Layout</td>
<td>21</td>
</tr>
<tr>
<td>Figure 14</td>
<td>CC-NRON View</td>
<td>23</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Zoom to a Rectangle</td>
<td>24</td>
</tr>
<tr>
<td>Figure 16</td>
<td>CC-NRON ArcView Project GUI</td>
<td>25</td>
</tr>
<tr>
<td>Figure 17</td>
<td>River and Gage View</td>
<td>26</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Generalized ArcView Project Schema</td>
<td>39</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Schema of Near-Real-Time Streamflow Data Collection</td>
<td>41</td>
</tr>
</tbody>
</table>
Table of Tables, Diagrams

and Geospatial features

TABLES

Table 1. CC-NRON GUI’s Button and Tools 27

Nueces.apr
Embedded Avenue Scripts B-1

DIAGRAMS

Diagram 1. Corpus Christi-Nueces River Observation Network
Data Sources 32

Program Flowcharts

STAT.C
Module Chart C- Stat.c 1
Program flowchart C- Stat.c 2

STDAILY.C
Module Chart C-Stdaily.c 1
Main Functions C-Stdaily.c 3
Subordinate Functions C-Stdaily.c 4

GEO SPATIAL FEATURES

STNRG.APR
Views A-1
Texas Lakes A-2
Highways A-3
Nueces Watershed, Counties, Streams A-4
MASTER'S GRADUATE PROJECT
Computing and Mathematical Sciences Department
College of Science and Technology
Texas A&M University-Corpus Christi

ABSTRACT

The purpose of the Corpus Christi-Nueces Observation Network project is to design and implement a geographic information system for observing the stream flow within the Nueces Watershed. The system provides a near-real-time graphic display of streams located within the Nueces Watershed and establishes the South Texas Natural Resource Geographic database. In addition, the system has designed and implemented an interface between the United States Geological Survey (USGS) Web site data and the supportive layers of the South Texas Natural Resource Geographic database.

The Corpus Christi-Nueces River Observation Network (CC-NRON) provides and maintains data so that the following are available within the Nueces River boundaries on a daily basis:

- Watershed with major streams and stream gages
- Temporal stream flows
- Stream gage hydrographs
1. BACKGROUND AND RATIONALE

Consider the following scenario:

In the middle of the night you are thirsty. You go into the kitchen and to the water dispenser on the refrigerator. You push the lever. Nothing happens. Now, you stand and study. Next, you go to the faucet over the kitchen sink. You turn the handle. Nothing happens. Who do you call?

You try the faucet again. Hissing and groaning sounds are emitted. Suddenly brown sludge pours forth. Oh the smell! Who do you call?

Jane, she lives near Choke Canyon. You dial her number.

Jane says, "My water is ok. However, we had five inches of rain two days ago. You know, the caliche pits and the gravel pits are flooded."

In rural Texas where rivers and streams provide home drinking water, you call your neighbor for information.

In Corpus Christi, you call the Mayor, the City Manager, or your city council member, who then calls the Water and Wastewater Supervisor, who in turn calls the plant manager, who then calls Jane at Choke Canyon and asks her if she’s had any rain.
The quality and quantity of drinking water in the Corpus Christi urban area is a primary concern. Currently, nearly half a million people depend on the Corpus Christi water supply for their drinking water. If the trend in population growth in Texas continues, there will also be a corresponding rise in the demand for water. Therefore, city planners require information that will determine the impact of changes within our watershed on our city’s water supply system. They yearn for a tool that can facilitate the dissemination of timely and accurate information about the current situation(s) within the source watershed. Daily questions routinely include the following:

How much water do we have?
How much water is coming into our lakes?
How much water is going into the bay?

Other questions might include:

Is the amount of run-off above Choke Canyon causing lake-level problems?
Is our lake low enough for the boat docks to be out of water?

Furthermore the public is interested in knowing:
Why are we in Conservation Level II?

The answers to these questions are required to be in a format understandable to the average customer/user. Overall, the system needs to convey conditions within the Nueces River Watershed that answer the questions:

What is happening and **where** is it happening?