Heavy-Ion Physics: Mini-Big Bangs in the Lab

Frank Geurts
Rice University

XI International Conference on Interconnections between Particle Physics and Cosmology
PPC2017
Corpus Christi, TX; May 22nd – 26th, 2017
Outline

• Studying QGP in nuclear collisions
• What can we learn from heavy quarks in nuclear collisions?
• Experimental toolkit
• Open charm and charmonium
 • a brief and incomplete selection of heavy-ion charm results
• Summary & outlook
Nuclei as Heavy As Bulls ...

“It would be interesting to explore new phenomena by distributing high energy or high nucleon density over a relatively large volume”, T.D. Lee (1974)

Ultrarelativistic heavy-ion collisions allow the creation of a hot and dense state of matter

➢ use heavy ions to scan through the QCD phase diagram

- RHIC Au+Au at $\sqrt{s_{NN}} = 7.7 – 200$ GeV
- and U+U at $\sqrt{s_{NN}} = 193$ GeV
- LHC Pb+Pb at $\sqrt{s_{NN}} = 2.76 – 5$ TeV
- γ between 100 - 2500
Studying the Quark-Gluon Plasma

• What are the dynamical properties of a such strongly interacting many-body system?
 • energy loss mechanisms
• what is the strength of the collective expansion
 • do quarks thermalize?

➢ Look for probes that are produced early, interact with the medium, and experience the full evolution

Typical time scales at RHIC:
• heavy ions cross in ~ 0.3 fm/c (LHC: ~10^{-3} fm/c)

Paul Sorensen (BNL)
Experimental Observables: Energy Loss

• Measure suppression patterns
 - probes travel through and strongly interacting with the medium

• Nuclear Modification Factor R_{AA}
 - quantify medium effects
 - “zero hypothesis”: scale $p+p$ to $A+A$ with N_{coll}

\[
R_{AA}(p_T) = \frac{d^2N_{AA}/dp_Td\eta}{\langle N_{AA}_{coll} \rangle d^2N_{pp}/dp_Td\eta}
\]

• Hard processes:
 - $R_{AA} = 1$ in the absence of nuclear effects or $R_{AA} < 1$ due to energy loss in the medium
 - competing mechanism may push R_{AA} up, e.g. Cronin effect, radial flow

• Soft processes: expect $R_{AA} < 1$
 - particle production scales with N_{part}
Experimental Observables: Collective Flow

- Measure collective flow with respective to reaction plane.
 - elliptic flow \(v_2 \): 2\(^{nd} \) Fourier coefficient

 ➢ For a thermalized system, expect initial coordinate-space anisotropy to be reflected in momentum-space anisotropy
 - particularly prominent in non-central collisions

- Gain information on degree of thermalization of medium
 - \(v_2 \) is sensitive to viscosity \(\eta/s \)

- At low \(p_T \): \(v_2 > 0 \)
 - evidence for collective hydrodynamical expansion
 - QGP evolves as a nearly perfect liquid

- At high \(p_T \): \(v_2 > 0 \)
 - due to path-length dependent E-loss of hard partons

\[
\frac{dN(p_T, y)}{d\phi} \propto 1 + 2v_2 \cos(2(\phi - \Psi))
\]
Heavy Flavors as Probes

- Charm and Bottom quarks are **heavy**
 - \(m_c \sim 1.3 \text{GeV}/c^2, \ m_b \sim 4.2 \text{GeV}/c^2 > \Lambda_{\text{QCD}}, T_{\text{QGP}} \)

- What does this heaviness imply ...
 - \(m_{c,b} > \Lambda_{\text{QCD}} \): production described in perturbative QCD
 - \(m_{c,b} > T_{\text{QGP}} \): thermal contribution from QGP negligible.

- Produced through hard scattering, early in heavy-ion collisions
 - final multiplicities set by initial hard production
Heavy Flavors as Probes

• Typical time scales in the evolution ...
 • Heavy ion crossing ~ 0.3 fm/c (at RHIC)
 • J/ψ formation time $\tau \sim 1/2m_c < 0.1$ fm/c
 • QGP thermalization time $\sim 0.3 - 0.6$ fm/c
 • QGP life time $\sim 5 - 10$ fm/c

production and potential modification in the medium at different time scales.

Heavy flavors can serve as well-calibrated probes
 • experience the full evolution of the QGP
 • flow, energy loss, and dissociation
Measuring Heavy Flavor Particles

Open Heavy Flavor Measurements

- **semi-leptonic decays** $D \to K \ell \nu_{\ell}$
 - large branching ratio
 - single e^\pm, μ^\pm: indirect access to kinematics
 - background from conversions and light hadron decays

- **hadronic decays** $D \to K\pi$ and $D^* \to D\pi$
 - small branching ratio
 - full topological reconstruction: direct access to kinematics
 - if not secondary vertex: large combinatorial background; need vertex detector!

- $B \to J/\psi \to \ell^+\ell^-$
 - non-prompt J/ψ measurement
 - vertex and EM/muon detectors

Quarkonia

- Leptonic decays, e.g. $J/\psi \to e^+e^-, \mu^+\mu^-$
 - need EM/muon detector
The Experimental Toolbox

• Colliding Systems: A+A, p+p, and p+A
 • compare hot nuclear medium (in A+A) to baseline (from p+p)
 • disentangle initial state effects (p+A) from final state observations (A+A)

• Perform Heavy Quark Tomography
 • calibrated probe: heavy flavors mostly produced in initial hard scattering, calculable in pQCD
 • compare light quarks with charm and bottom to disentangle parton energy loss mechanisms
 • compare open charm hadron yields to study hadronization

• Considerable theoretical and experimental efforts have been underway
 • with recent detector upgrades
 • and new upgrades planned in the near future
Heavy Ion Experiments at RHIC & LHC

- **STAR**
 - dielectrons
 - dimuons (MTD, 2014-)
 - TPC + Heavy Flavor Tracker (2014-2016)

- **PHENIX (-2016)**
 - dielectrons
 - dimuons at forward rapidity
 - VTX (2011) and FVTX (2012)

- sPHENIX (2022+)
 - excellent Y reconstruction

- **ALICE**
 - dielectrons
 - dimuons
 - TPC + Inner Tracker System (ITS)

- **ATLAS**
 - dimuons
 - inner detector (ID) tracking system

- **CMS**
 - dimuons
 - inner tracker

- **LHCb (2015)**
 - fixed target & collider mode
 - low-p_T quarkonia at forward rapidity
Medium Interactions: Probing Energy Loss

Mechanisms for parton energy loss in QCD medium

- **Collisional**: collisions with medium gluons
 \[\Delta E \sim \log(E) \] L

- **Radiative**: medium-induced gluon radiation
 - **Low energy**: incoherent radiation (Gunion-Bertsch)
 \[\Delta E \sim EL/\lambda_{\text{mfp}} \]
 - **Intermediate energy**: coherent radiation (BDMPS-Z)
 \[\Delta E \sim \sqrt{EL} \]
 - **High energy**: "thin media", mostly produced outside QGP (not significant contribution)
 \[\Delta E \sim L^2 \]

Dead cone effect:
- gluon radiation modified by the mass of parent quark
 - radiation for angles \(\theta < m/E \) is suppressed
 - effectively reduces radiative energy loss for heavy quarks

\[\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \]
From Energy Loss to R_{AA}

Measurements at RHIC

- $R_{AA} > 1$ for $p_T \sim 1.5\,\text{GeV/c}$ – enhancement ...
 indications of charm coalescence with a radially flowing medium?

- $R_{AA} < 1$ at high $p_T > 4\,\text{GeV/c}$ - significant suppression
 - strong charm-medium interactions
 - $R_{AA}(D) \sim R_{AA}(\pi)$

- Do we understand the initial interactions, i.e. “Cold Nuclear Matter” effects? more on that later ...

STAR: PRL 113 (2014) 142301; QM15
From Energy Loss to R_{AA}

Measurements at LHC

- $R_{AA}(\pi) \leq R_{AA}(D)$

Djordjevic [PRL112 (2014) 042302]

Inherently quantitative solution:

- despite charged hadrons at LHC predominantly from gluons,
- jet fragmentation distorts bare fragmentation patterns

- net effect: moderate to no difference
Comparing Bottom to Charm R_{AA}

At RHIC first results from PHENIX

- B mesons identified via displaced (non-prompt) J/ψ

At LHC results from ALICE & CMS

- $R_{AA}(B) > R_{AA}(D)$

ALICE, CMS 2.76 TeV

CMS: EPJC77 (2017) 252
ALICE: JHEP 11 (2015) 205
Heavy Flavor Flow

Analogy by Jamie Nagle (UC Boulder)

“No putting a rock in a stream and watch if the stream can drag it along”

- **Low p_T:** do heavy quarks take part in flow?
 - if so, what is the mechanism? Coalescence?

- **High p_T:** probe path length dependence of energy loss
 - additional measure of energy loss
 - in-plane vs. out-of-plane
 - test models that include heavy flavor interactions in an expanding medium
Open Charm Flow ... at LHC

Recall flow measurement:
extract medium properties from motion of heavy quarks in medium (Brownian motion), e.g. diffusion coefficient

Recall nuclear modification measurements:
D-meson R_{AA} suppression at high p_T \Rightarrow
strong charm-medium interactions

- at LHC: $D^0 v_2$ compatible with light flavor v_2
- indications of thermalized charm?
... and $D^0 v_2$ at RHIC

- Low-p_T v_2 is especially sensitive to the partonic medium:
 - scattering strength, transport properties

- What do we observe at low p_T at RHIC ...
 - mass ordering for $p_T < 2$ GeV/c (hydrodynamic behavior)
 - v_2 follows similar NCQ scaling as observed for light hadrons for $(m_T - m_0) < 1$ GeV/c^2

- Evidence of charm flow similar to that of the medium
 suggests charm quarks may have achieved thermalization
Open Charm and Strangeness \(\text{... } D_S \)

- \(D_S \) yield is sensitive to strangeness production and hadronization mechanism
 - strangeness enhancement observed in heavy-ion collisions from SPS to LHC
- If formation dominated by in-medium recombination with light quarks ...
 ➢ then what is the effect on yield?
 ➢ Model description agrees within uncertainties at low \(p_T \)
 - but, at high \(p_T \) under predicts because it does not include inelastic processes (gluon radiation)

At LHC ...

\[R_{AA} = \frac{N_{\text{AA}}}{N_{\text{pp}}} \]

- Average \(D^0, D^+, D^{*+}, |y|<0.5 \)
- with \(p_T \)-extrapolated pp reference
- \(D^*_s, |y|<0.5 \)

At RHIC ...

- \(D_s \) (Run 14)
- Extrapolated error from \(p+p \) ref.
- \(D^0 \) (Run 10+11)
- Au+Au 10-40%

RHIC \(R_{AA} \) of \(D_s \) higher than 1, but statistically not significant
Quarkonia in Strongly Interacting QGP

- Sensitive to color screening of quark potential
 - QGP consists of deconfined color charges
 - proposed as a QGP signature in the mid-80s by Matsui & Satz PLB 178 (1986) 416

- $r_d(T)$ decreases with increasing T
 - if $r_d(T)$ falls below screening radius r_i for quarkonium state i, then $q\bar{q}$ cannot bind ...
 - $i = \psi'$, X_c, J/ψ, ..., $\Upsilon(1S)$ cannot exist

- Suppression of different states determined by T_{med} and E_{bind}
 - sequential quarkonium dissociation points T_i specify temperature of the QGP

- QGP thermometer

PPC 2017 (Corpus Christi, TX) - May 24, 2017
Frank Geurts (Rice Univ., Houston TX)
A More Complicated Picture Emerges

- Measured J/\Psi yields include significant feeddown contributions
 - prompt: \(~10\%\) from \(\psi(2S)\) and \(~30\%\) from \(X_c\) decays
 - non-prompt: B mesons carry 10-25\% of charmonium yield

- Contributions from Cold Nuclear Medium effects
 - enhancement mechanisms, Cronin effect
 - suppression mechanisms, e.g. gluon shadowing (nPDFs), nuclear absorption, initial state energy loss
 - systematic studies to measure effective absorption cross section

- Contributions from hot & dense medium effects
 - recombination from uncorrelated charm pairs

Eskola et al. JHEP 04 (2009) 065
J/ψ in Hot Nuclear Matter

- J/ψ \(R_{AA} \) for \(p_T > 0 \) GeV/c: smaller at RHIC than LHC \(\Rightarrow \) more recombination at LHC
- J/ψ \(R_{AA} \) for \(p_T > 5 \) GeV/c: larger at RHIC than LHC \(\Rightarrow \) stronger dissociation at LHC
- Transport models with dissociation and recombination qualitatively describe the data
Sequential Suppression in Bottomonium

- Υ measurements
 - negligible recombination effect
 - @RHIC: $\sigma_{cc} \sim 800 \mu$b $\gg \sigma_{bb} \sim 1-2 \mu$b
 - less co-mover absorption predicted
 - $\Upsilon(1S)$ tightly bound, thus large kinematic threshold
 - expect $\sigma_{\Upsilon_{abs}} \sim 0.2 \mu$b $< \sigma_{J/\psi_{abs}}$
 - Lin & Ko, PLB 503 (2001) 104
 - low production rate

- Υ suppression pattern supports sequential melting
Summary & Outlook

• Heavy flavors are excellent probes to study hot and dense nuclear matter
 • HF is created earlier in the system and experiences the full evolution
• Considerable body of data available
 • with different colliding systems
 • at RHIC and LHC energies
• Significant theoretical interest and effort
• Recent detector upgrades are delivering very promising results
 • paired with spectacular increases in delivered luminosities by the accelerators
• Expect new detector upgrades to improve vertex and calorimetry performance
 • both at RHIC and LHC

➢ These are exciting times for
 “Nuclei and Flavors as Heavy as Bulls ... “
Backup Slides
Cold Nuclear Matter Effects ...

Look for initial state (CNM) effects to $R_{p(d)A}$ in d+Au (RHIC) or p+Pb (LHC)

• Open heavy-flavor: Measurements at RHIC of e^\pm in d+Au
 • could the difference at low p_T between light and heavy flavor be attributed to CNM effects?

system-size study incl. Cu+Cu

- smooth evolution from d+Au to Au+Au for both versus p_T and N_{part}
Open Heavy Flavor: CNM at Forward Rapidity

PHENIX μ^- measurements at forward and backward rapidities in d+Au

Peripheral Collisions
- no significant modifications

Central Collisions
- suppression at forward y
- enhancement at backward y
 - EPS09 nPDF calculations cannot describe backward y
 - Other CNM effects?

Final state parton recombination

Peripher al Collisions

Central Collisions
J/ψ in Cold Nuclear Matter

Compare R_{dA} measurements of J/ψ with open heavy flavor
be mindful of the different kinematics

• Expect sensitivity to the same effects as seen in R_{dA} of μ^-
 ➢ consistency in the forward rapidity

• However, in backward rapidity J/ψ shows additional effect of breakup
 • beyond the underlying HF μ^-
 • backward rapidity = A-going direction, higher particle densities
 ➢ Recent comparisons with ψ' suggest importance of co-mover dissociation
Comparing R_{AA} and v_2 to Models

- Constrain models by comparing to both collective flow and nuclear modification

- **DUKE**: Langevin simulation
 - transport properties tuned to LHC
 - $(2\pi T)D=7$
 - doesn’t describe magnitude of v_2

- **SUBATECH**: pQCD
 - re-summation with hard thermal loops
 - $(2\pi T)D=2-4$
 - good agreement for both v_2 and R_{AA}

- **TAMU**: non-perturbative T-matrix
 - $(2\pi T)D=2 – 7$
 - good agreement with v_2 at low p_T
 - model favors including of c quark diffusion in the medium