Dark Matter searches at CMS

Andreas Albert on behalf of CMS
WIMP Dark Matter searches at CMS

Andreas Albert on behalf of CMS
The LHC
LHC timeline

CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:22 to 2016-10-27 14:12 UTC

- 2010: 7 TeV, 45.0 fb⁻¹
- 2011: 7 TeV, 6.1 fb⁻¹
- 2012: 8 TeV, 23.3 fb⁻¹
- 2015: 13 TeV, 4.2 fb⁻¹
- 2016: 13 TeV, 40.8 fb⁻¹

√s 7 TeV 8 TeV 13 TeV

Run 1 Run 2
Collider production of DM

Simplified SM extensions

SM + mediating boson + DM
$E_{T,\text{miss}} + X$ searches

H(125) decays to DM

No immediate need for new bosons
$E_{T,\text{miss}} + X$ searches

SUSY

More complex signatures

+ Others
Outline

- Introduction
- $E_{T,\text{miss}} + X$ searches
- SUSY searches
Two signal categories

Monojet

≥ 1 small-radius jet

Mono-V (V=W/Z)

≥ 1 large-radius ("fat") jet

Common Selection

$E_{T,\text{miss}} > 250$ GeV

No leptons, b jets

High cross-sections at hadron collider

Signal extraction in $E_{T,\text{miss}}$ distribution
Monojet / Mono-V(hadronic)

- 5 control regions, e.g. $Z \rightarrow ee$
- Recoil = $E_{T,\text{miss}}$ with leptons excluded

Combined maximum likelihood fit
Postfit uncertainties 3-13% (!)

No signal found!
Mono-Z(II)

- Lower cross-sections
- Z boson well reconstructable
- Back-to-back-topology

Signal region

3l control region

No signal found!
Dijet

Target mediator decays to quarks
No DM produced → no $E_{T,\text{miss}}$

Look for bump dijet mass spectrum
Low-mass from online analysis

No signal found!
Simplified models

Assume minimal additional particle content: SM + 1 mediator boson + DM fermion

Spin 1 mediator case:

\[\mathcal{L}_{\text{vector}} = g_q \sum_{q=u,d,s,c,b,t} Z'_\mu \bar{q} \gamma^\mu q + g_\chi Z'_\mu \bar{\chi} \gamma^\mu \chi \]

\[\mathcal{L}_{\text{axial-vector}} = g_q \sum_{q=u,d,s,c,b,t} Z'_\mu \bar{q} \gamma^\mu \gamma^5 q + g_\chi Z'_\mu \bar{\chi} \gamma^\mu \gamma^5 \chi \]

Parameters

Mediator properties
- Spin
- Color and electric charge
- Mass

DM properties
- Mass

Couplings
- \(g_q, g_l, g_{DM} \)
- coupling structure

→ Benchmark scenarios
DM Comparison: Spin 1 in $E_{T,\text{miss}} + X$

Spin-1 interpretation: Standard Z’
Electrically neutral, colorless s-channel mediator

![Graph showing exclusion regions for various mediator masses](image)
DM Comparison: Spin 1 in $E_{T,\text{miss}} + X$

Collider

- M_{med} defines sensitivity
- m_{DM} only relevant relative to M_{med}
- Hierarchy follows cross-sections

NB: Exclusion only valid for these parameters!
DM Comparison: Spin 1 in $E_{T,\text{miss}} + X$

Indirect constraints
- Resonances searches could detect mediator
- No DM produced
- Sensitivity also for $m_{\text{DM}} > M_{\text{med}}$

Relic density
- assuming simplified model and no further BSM
- more plausibility check than constraint
Spin-1 comparison to direct detection

Spin independent coupling
Collider complements DD at low m_{DM}

$$\sigma \propto \left(\frac{g_q g_{\text{DM}}}{M_{\text{med}}^4} \right)^2 \left(\frac{m_n m_{\text{DM}}}{m_n + m_{\text{DM}}} \right)^2$$
Spin-1 comparison to direct detection

Spin dependent coupling
Collider searches gives strong constraints across full m_{DM} range

$$\sigma \propto \left(\frac{g_q g_{DM}}{M_{med}^4}\right)^2 \left(\frac{m_n m_{DM}}{m_n + m_{DM}}\right)^2$$
Spin-0 mediators

Diagram and Lagrangian credit: hep-ex:1507.00966

Assume Yukawa-couplings, $y^f \sim m_f / \text{vev}$

→ Coupling to light particles suppressed
Spin-0 mediators: Scalar

Not quite sensitive yet
Spin-0 mediators: Scalar

Heavy flavor update coming soon!

May 24th 2017
A. Albert – DM @ CMS
Spin-0 mediators: Pseudoscalar

Can probe with 2016 dataset!
Spin-0 mediators: Pseudoscalar

Monojet EXO-16-048

DM-nucleon cross-section suppressed by \((q/m_{\text{Nucleon}})^4 \)

→ No direct detection constraints!
Monotop

More exotic: Single top + DM
Probe FCNC and colored, charged scalar mediators

Hadronic decays of high-p_T single top
- Single fat jet
- 3 sub jets, one of which is b tagged
- Jet mass \(\approx m_{\text{top}} \)
Is the scalar H(125) boson a portal to DM?

- Plain SM production + invisible decay
- No extra model dependence
- Probe in $E_{T,\text{miss}} + X$ topologies

Combined

- 2011, 2012 and 2015 data
- three search channels

Bottom Line

- $\text{BR}(H \rightarrow \text{inv.}) < 0.24$

VH ($\rightarrow \text{Mono-Z/W}$) and ggH($\rightarrow \text{monojet}$) already improved with 2016 data, qqH to come
Outline

• Introduction
• $E_{T,\text{miss}} + X$ searches
• SUSY searches
SUSY searches

LSP is natural DM candidate in R-parity conserving SUSY
Typically lightest Neutralino
Production inevitable in decay chains!

Categorization by primary supersymmetric particles

- **Gluinos**
- **Squarks**
- **Gauginos**

Simplified models
- Non-participating sparticles have infinite mass

Parameters
- masses, branching fractions

Main sensitivity axis is primary sparticle mass
SUSY in jets + $H_{T,\text{miss}}$

Target gluino and squark pair production

Selection

- At least two jets, no leptons
- Large hadronic activity:

 $$H_T = \sum_{\text{jets}} |p_T| > 300 \text{ GeV}$$

- Large missing momentum:

 $$|\vec{H}_{T,\text{miss}}| = |\sum_{\text{jets}} \vec{p}_T| > 300 \text{ GeV}$$

Search regions binned in H_T and $H_{T,\text{miss}}$
+ additional categorization in N_{jet}, N_b
SUSY in jets + $H_{T,\text{miss}}$
SUSY in jets + $H_{T,\text{miss}}$

One category in N_{jet}

One sub-category in $N_{\text{b-jet}}$

One point per region

$35.9 \text{ fb}^{-1} \ (13 \text{ TeV})$

$N_{\text{jet}} \geq 9$

$7 \leq N_{\text{jet}} \leq 8$

$5 \leq N_{\text{jet}} \leq 6$

$3 \leq N_{\text{jet}} \leq 4$

$N_{\text{jet}} = 2$

$N_{\text{b-jet}} = 0$

$N_{\text{b-jet}} = 1$

$N_{\text{b-jet}} = 2$

Data

Hadronic τ lepton

Lost lepton

QCD
SUSY in jets + $H_{T,\text{miss}}$

No signal found!
SUSY in jets + $H_{T,\text{miss}}$

Gluinos

High cross-section

probe LSP neutralino up to ≈ 1.2 TeV

low b mass \rightarrow
slightly higher reach

Squarks

Heavy flavor has slightly better S/B discrimination

But: 4 light flavors instead of 2 heavy
SUSY from multilepton events

Chargino-neutralino pair production
- Decay via sleptons → main sensitivity
- If sleptons heavy → direct chargino decay to LSP
- Charged leptons + $E_{T,\text{miss}}$ in final state
SUSY from multilepton events

Signal Region “A”:
- 3 leptons, at least one OSSF pair
- region numbering in $E_{T,\text{miss}}$

No signal found!

Exclusion:
- Depends on decay channel, branchings
- Exclude LSP neutralino up to ≈ 700 GeV
Presented only two interesting results

There are > 50 results with run-II data

Similar implications for DM
Summary

$E_{T,\text{miss}} + X$ searches
- Signature driven
- Exact exclusion is model dependent, but searches are not!

Resonance searches
- High sensitivity for m_{med} in TeV range
- Indirect, no actual DM produced \rightarrow add. model dependence

SUSY searches
- Probe LSP neutralino up to ≈ 1.2 TeV
- More model dependent than the above, but less so than you think

Large range of complementary searches

No signal yet

More data to come
More details are easy to find!

Analyses

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Report ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monojet / Mono-Z/W (hadronic)</td>
<td>EXO-16-048</td>
</tr>
<tr>
<td>Mono-Z(ll)</td>
<td>EXO-16-052</td>
</tr>
<tr>
<td>Monophoton</td>
<td>EXO-16-031</td>
</tr>
<tr>
<td>Dijet</td>
<td>EXO-16-056</td>
</tr>
<tr>
<td>Boosted Dijet</td>
<td>EXO-17-001</td>
</tr>
<tr>
<td>Monotop</td>
<td>EXO-16-017</td>
</tr>
<tr>
<td>H(inv) combination</td>
<td>JHEP 02(2017) 135</td>
</tr>
<tr>
<td>SUSY in jets+E_{miss}</td>
<td>SUS-16-033</td>
</tr>
<tr>
<td>SUSY in multilepton events</td>
<td>SUS-16-039</td>
</tr>
</tbody>
</table>

LHC Dark Matter working group

(models, benchmarks, conventions)

- arXiv:1507.00966
- arXiv:1603.04156
- arXiv:1703.05703
Backup
Monophoton

- Similar topology to other mono-X searches
- Profit from cross-section
- Challenging experimental backgrounds
- Cut & Count

No signal found!
Resonance search comparison

- Reducing g_q from 0.25 to 0.1 kills dijet constraints
- For $g_q = g_\ell$, dilepton dominates
Resonance search comparison

- Similar power between dijet and dilepton for $g_q = 10 g_l$